CHOCORUA LAKE
Water Quality Monitoring: 2007
Summary and Recommendations
NH LAKES LAY MONITORING PROGRAM

By: Robert Craycraft & Jeffrey Schloss

Center for Freshwater Biology
University of New Hampshire

To obtain additional information on the NH Lakes Lay Monitoring Program (NH LLMP) contact the Coordinator (Jeff Schloss) at 603-862-3848 or Assistant Coordinator (Bob Craycraft) at 603-862-3696.
PREFACE

This report contains the findings of a water quality survey of Chocorua Lake, Tamworth New Hampshire, conducted in the summer of 2007 by the University of New Hampshire Center For Freshwater Biology (CFB) in conjunction with the Chocorua Lake Association.

The report is written with the concerned lake resident in mind and contains a brief, non-technical summary of the 2007 results as well as more detailed "Introduction" and "Discussion" sections. Graphic display of data is included, in addition to listings of data in appendices, to aid visual perspective.
ACKNOWLEDGMENTS

2007 was the twenty-sixth year Chocorua Lake was monitored in conjunction with the New Hampshire Lakes Lay Monitoring Program (LLMP). The volunteer monitors who collected and analyzed water quality samples are highlighted in Table 1 while Dwight Baldwin again acted as the liaison to the University of New Hampshire Center for Freshwater Biology (CFB). The Center for Freshwater Biology congratulates the volunteer monitors on the quality of their work, and the time and effort put forth. We invite other interested residents to join the Chocorua Lake water quality monitoring effort in 2008 and contribute to the expanding water quality database. The Chocorua Lake Association provided the funding for the volunteer monitoring program while the CFB provided at-cost services and subsidized analyses.

The Center for Freshwater Biology is a not-for-profit research program coordinated by Jeffrey Schloss and Robert Craycraft. Members of the CFB summer field team included Jennifer Thompson and Erin Cudly while Benjamin Ho, Jessy Klotzer, Kellie Norris and Susan Wilderman provided additional assistance in the fall analyzing, compiling and organizing the water quality data.

The CFB acknowledges the University of New Hampshire Cooperative Extension for funding and furnishing office and storage space while the College of Life Sciences and Agriculture provided laboratory facilities and additional storage space. The CFB would like to thank the Caswell Family Foundation for their continued generosity in providing long-term support for undergraduate assistantships while additional support for administering the NH LLMP comes from the United States Department of Agriculture Cooperative State Research, Education and Extension Service through support from the New England Regional Water Quality Program (http://www.usawaterquality.org/newengland/).

CHOCORUA LAKE
2007 NON-TECHNICAL SUMMARY

Chocorua Lake, located at the southerly base of Mount Chocorua, continues to serve as a portal to the White Mountains National Forest and as a gateway to the North Country. Long-term water quality monitoring was instituted on Chocorua Lake in 1978 and the monitoring has served to identify potential problems early on and address the threats to water quality. This proactive approach helps ensure that Chocorua Lake will remain a natural resource asset for future generations.

Volunteer water quality monitoring, instituted on Chocorua Lake in 1982, continued in 2007 and spanned the period of May 23 to October 4. The 2007 water quality monitoring focused on the collection of water quality data at a deep sampling station, Site 1 South, that provides insight into the overall condition of Chocorua Lake.

2007 Water Quality Overview:
Water transparency measurements are collected with a standardized eight inch diameter black and white disk that is lowered into the water column until it can no longer be seen. The Chocorua Lake water transparency measurements remained high throughout the sampling season and were visible as deep as 20.8 feet (6.3 meters) on May 23 and again on July 7, 2007.

The amount of microscopic plant growth (visually detectible as golden or green water) remained low between May 23 and October 4, 2007. All of the 2007 chlorophyll a measurements remained below nuisance levels. Furthermore, all of the 2007 total phosphorus (nutrient) concentrations were low and consistently corresponded to low levels of microscopic plant “algal” growth.

Lake acidity, measured as pH, was near neutrality for most of the year and remained within the tolerable range for most aquatic organisms throughout the 2007 sampling season.

Long-Term Data:
Annual Secchi Disk transparency data measured since 1982 exhibit a gradual trend of decreasing water transparency between 1982 and 2007 while the annual chlorophyll a concentrations exhibit a general trend of increasing values over the same span. Annual total phosphorus data, collected since 1999, exhibit a trend of decreasing total phosphorus concentrations. Thus, while the chlorophyll a and Secchi Disk transparency data suggest the water quality has declined slightly since 1982, the total phosphorus data (collected since 1999) suggest Chocorua Lake might be experiencing a period of recovery.
Protecting the Lake by minimizing nutrient inputs:

- **Encourage shoreside vegetation and protect wetlands** - shoreside vegetation (what is known as riparian vegetation) and wetlands provide a protective buffer that “traps” pollutants before reaching the lake. These buffers remove materials both chemically (through biological uptake) and physically (settling materials out). As riparian buffers are removed and wetlands lost, pollutant materials are more likely to enter the lake and in turn, favor declining water quality. Shoreline vegetation grown tall will also discourage geese and shade the water reducing the possibility of aquatic weed recruitment.

- **Limit fertilizer applications** - fertilizers entering the lake can stimulate aquatic plant and algal growth and in extreme cases result in noxious algal blooms. Increases in algal growth tend to diminish water transparency and under extreme cases culminate in surface “scums” that can wash up on the shoreline and can also produce unpleasant smells as the material decomposes. Excessive nutrient concentrations also favor algal forms known to produce toxins which irritate the skin and under extreme conditions, are dangerous when ingested. Use low maintenance grasses such as fescues that require less nutrients and water to grow. After a lawn is established a single application of fertilizer in the late fall is generally more than adequate to maintain a healthy growth. Oftentimes a pH adjustment will do more good and release nutrients already in the soils.

- **Limit organic matter loading** - organic matter (leaves, grass clippings, etc.) are a major source of nutrients in the aquatic environment. As the vegetative matter decomposes nutrients are “freed up” and can become available for aquatic plant and algal growth. In general, we are not concerned with this material entering the lake naturally (leaf senescence in the fall) but rather excessive loading of this material as occurs when residents dump or rake leaf litter and grass clippings into the lake. This material not only provides large nutrient reserves which can stimulate aquatic plant and algal growth but also provides habitat for leaches and other potentially undesirable organisms in near shore swimming areas.

- **Maintain Septic Systems** - faulty septic systems are a big concern as they can be a primary source of water pollution around our lakes. Septic systems are loaded with nutrients and can also be a health threat when not functioning properly.

- **Limit the loss of vegetative cover and the creation of impervious surfaces** - A forested watershed offers the best protection against pollutant runoff. Trees and tall vegetation intercept heavy rains that can erode soils and surface materials. The roots of these plants keep the soils in place, process nutrients and absorb moisture so the soils do not wash out. Impervious surfaces (paved roads, parking lots, building roofs, etc.) reduce the water’s capacity to infiltrate into the ground, and in turn, go through nature’s water purification system. As water seeps into the soil, pollutants are re-
moved from the runoff through absorption onto soil particles. Biological processes detoxify substances and/or immobilize substances. Surface water runoff over impervious surfaces also increases water velocities which favor the transport of a greater load of suspended and dissolved pollutants into your lake.

- **Discourage the feeding of ducks and geese** — ducks and geese that are locally fed tend to concentrate around the known food source and can result in localized water quality problems. Waterfowl quickly process food into nutrients that are capable of stimulate microscopic plant “algal" growth. Ducks and Geese are also host to the parasite responsible for swimmers itch. While not a health threat, swimmers itch is very uncomfortable.

When new construction or the expansion of existing cottages are proposed, consult the Town’s building inspector and/or the Department of Environmental Services Shoreland Protection Act Educational Coordinator (271-3503) who will provide guidance on how to minimize water quality impacts.
CHOCORUA LAKE
2007 EXECUTIVE SUMMARY

The following section discusses the 2007 and historical Chocorua Lake water quality data in more detail while a complete listing of the 2007 Chocorua Lake water quality data collected at the centrally located deep sampling station, Site 1 South, is presented in Appendix A. An interpretive summary of the box and whisker plot statistical graphics is included in Appendix B.

Table 2: 2007 Chocorua Lake Seasonal Average Water Quality Readings and Water Quality Classification Criteria used by the New Hampshire Lakes Lay Monitoring Program.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oligotrophic "Pristine"</th>
<th>Mesotrophic "Transitional"</th>
<th>Eutrophic "Enriched"</th>
<th>Chocorua Lake Seasonal Average (range)</th>
<th>Chocorua Lake Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Clarity (meters)</td>
<td>> 4.0</td>
<td>2.5 - 4.0</td>
<td>< 2.5</td>
<td>5.5 meters (range: 4.7 - 6.3)</td>
<td>Oligotrophic</td>
</tr>
<tr>
<td>Chlorophyll a (ppb)</td>
<td>< 3.0</td>
<td>3.0 - 7.0</td>
<td>> 7.0</td>
<td>1.3 ppb (range: 0.9 - 2.8)</td>
<td>Oligotrophic</td>
</tr>
<tr>
<td>Total Phosphorus (ppb)</td>
<td>< 15.0</td>
<td>15.0 - 25.0</td>
<td>> 25.0</td>
<td>3.2 ppb (range: 3.0 - 4.2)</td>
<td>Oligotrophic</td>
</tr>
</tbody>
</table>

1) Water Clarity (measured as Secchi Disk transparency) – The 2007 seasonal average water transparency of 18.2 feet (5.5 meters) is characteristic of an unproductive New Hampshire lake; the 2007 Chocorua Lake Secchi disk transparency measurements consistently remained visible deeper than the depth of 13.2 feet (4.0 meters) that is considered the boundary between unproductive and moderately productive New Hampshire lake (Table 2). Refer to figures 10 and 11 for a visual depiction of the 2007 seasonal water transparency data.

The 2007 median water transparency value was significantly deeper than the 2006 median water transparency and was one of the deeper median Secchi Disk transparency measurements on record (Figure 12). The dry summer months of May, June, August and September coincided with reduced flushing of debris and colored waters (discussed later in this section) that, in turn, tended to favor deeper water transparency measurements in Chocorua Lake during the 2007 sampling season.

2) Microscopic plant abundance “greenness” (measured as chlorophyll a) – The 2007 seasonal average Chocorua Lake chlorophyll a concentration of 1.3 parts per billion (ppb) remained well below the concentration of 3.0 ppb that is considered the boundary between an unproductive and moderately productive New Hampshire lake (Figure 10).

The 2007 median Chocorua Lake chlorophyll a concentration was significantly lower (i.e. less algal greenness) than the 2006 median chlorophyll a concentration and was at the lowest level since 1985 (Figure 13).
3) Background (dissolved) water color: often perceived as a “tea” color in our more highly stained lakes – The 2007 seasonal average Chocorua Lake dissolved color concentration of 17.2 chloroplatinate units (cpu) falls within the classification of a slightly “tea” colored lake (Table 3). Dissolved color, or true color as it is sometimes called, is indicative of dissolved organic carbon levels in the water (a by-product of microbial decomposition). Small increases in water color from the natural breakdown of plant materials in and around a lake are not considered detrimental to water quality. However, increased color can lower water transparency, and hence, change the public perception of water quality.

The 2007 Chocorua Lake seasonal average dissolved color concentration was one of the lower dissolved color concentrations on record and reflects the dry summer months that limited the flushing of highly colored waters, from the surrounding wetlands, into Chocorua Lake (Figure 11). The low dissolved color concentrations likely contributed to the increased 2007 water transparency measurements documented in Chocorua Lake.

<table>
<thead>
<tr>
<th>Range (cpu)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 10</td>
<td>Clear</td>
</tr>
<tr>
<td>10 - 20</td>
<td>Slightly colored</td>
</tr>
<tr>
<td>20 - 40</td>
<td>light tea color</td>
</tr>
<tr>
<td>40 - 80</td>
<td>tea colored</td>
</tr>
<tr>
<td>> 80</td>
<td>highly tea colored</td>
</tr>
</tbody>
</table>

4) Total Phosphorus: the nutrient considered most responsible for elevated microscopic plant growth in our New Hampshire lakes. - Total phosphorus concentrations, measured in the Chocorua Lake surface waters (epilimnion), were low in 2007 (range: 3.0 – 4.2 parts per billion) and remained well below the concentration of 15 ppb that is considered the boundary between an unproductive “pristine” and more nutrient enriched “transitional” New Hampshire Lake. The 2007 median total phosphorus concentration decreased, relative to the 2006 concentration, and was at the lowest level since total phosphorus sampling became a standard component of the annual water quality testing on Chocorua Lake (Figure 14).

5) Dissolved salts: measured as specific conductivity – The 2007 Chocorua Lake, Site 1 South, specific conductivity was low and ranged from 29.4 to 33.6 micro-Siemans (uS). High specific conductivity values can be an indication of problem areas around a lake where failing septic systems, heavy fertilizer applications and sedimentation are contributing “excessive” nutrients into the lake. High specific conductivity values can also be an indication of heavy road salt applications within the Chocorua Lake watershed.

6) Resistance against acid precipitation (measured as total alkalinity) – The 2007 seasonal average Chocorua Lake alkalinity measured 3.5 milligrams per liter (mg/l) which is considered typical of a lake that is moderately vulnerable to acid precipitation according to the standards devised by the New Hampshire Department of Environmental Services (Table 4). Generally speaking, the
geology of the region does not contain the appropriate mineral content (e.g. limestone) that increases the buffering capacity of our surface waters. Thus, lakes in the region (e.g. Conway Lake, Ossipee Lake and Silver Lake) have naturally low alkalinites. The 2007 Chocorua Lake alkalinity measurements were shallowest earliest in the season, during the months of May and June, and followed the period of heavy April precipitation (prior to the dry summer months) and followed the period of spring snowmelt.

Lake acidity (measured as pH) – The 2007 Chocorua Lake, Site 1 South, volunteer monitor pH data ranged from 6.6 to 7.1 units and remained well within the tolerable range for most aquatic organisms. A lower pH value was documented in May, following the heavy April rains and the spring melt period, relative to pH measurements recorded later in the year.

7) Temperature and dissolved oxygen profiles – Temperature profiles collected by the volunteer monitors indicate Chocorua Lake becomes stratified into two distinct thermal layers during the summer months; a warm upper water layer, the epilimnion, overlies a layer of rapidly decreasing temperature known as the thermocline. The formation of thermal stratification limits the replenishment of oxygen in the deeper waters and under adverse conditions can favor oxygen depletion near the lake-bottom. Historical data collected by the Center for Freshwater Biology indicate dissolved oxygen concentrations become reduced near the lake-bottom and restrict the Chocorua Lake fishery to the warm surface waters late in the summer.

Based on the current and historical water quality data, Chocorua Lake would be considered an unproductive "pristine" New Hampshire lake that at times borders conditions typical of a more nutrient enriched, mesotrophic, lake. While the current Chocorua Lake water quality is high, developmental pressures within the Chocorua Lake watershed continue to pose a threat to the lake. A first step towards preserving the high water quality characteristic of Chocorua Lake is to take action at the local level and do your part to minimize the number of pollutants (particularly sediment and the nutrient phosphorus) that enter the lake. Whenever possible, maintain riparian buffers (vegetative buffers adjacent to the water body). These buffers will biologically “take up” nutrients before they enter the lake and will also provide physical filters which allow materials to settle out before reaching the lake. Reduce fertilizer applications. Most residents apply far more fertilizers than necessary which can be a costly expense to the homeowner and can also be detrimental to the lake since the same nutrients that make our lawns green will also stimulate plant growth in our lakes. Make sure your septic system is well maintained and have it pumped out on a regular basis. An improperly functioning septic system can contribute “excessive” nutrients into the lake and result in early failure, costing
thousands of dollars to repair or replace. Future volunteer monitoring efforts should continue to be directed at pinpointing problematic regions around the lake where corrective and educational efforts should be focused.
COMMENTS AND RECOMMENDATIONS

1) Some lake associations have become increasingly interested in conducting supplemental near-shore sampling and/or stream sampling to better assess whether localized water quality variations exist. The supplemental near-shore and tributary sampling would facilitate the targeting of resources (i.e. money and volunteer hours) to the most critical areas within the watershed where future monitoring and corrective efforts should be directed. Expanded water quality monitoring could be as simple as collecting additional near-shore/tributary total phosphorus or chlorophyll a samples or could involve the expansion to the collection of additional water quality parameters such as dissolved oxygen and specific conductivity measurements. Advanced water quality monitoring efforts might also include more in-depth shoreline/watershed surveys aimed at visually identifying the land-use patterns and potential problem areas within the drainage basin. If you are interested in discussing additional water quality monitoring options that would meet your needs please contact Bob Craycraft @ 862-3696 or via email, bob.craycraft@unh.edu.

2) We recommend that each participating lake association, including the Chocorua Lake Association, continue to develop its database on lake water quality through continuation of the long-term monitoring program. The database currently provides information on the short-term and long-term cyclic variability that occurs in Chocorua Lake and through continued monitoring will enable more reliable predictions of both short-term and long-term water quality trends.

3) We recommend continued lake sampling early in the season (April/May) to document Chocorua Lake’s reaction to the nutrient and acid loadings that typically occur during and after spring thaw. Sampling should include alkalinity, chlorophyll a, dissolved color and Secchi Disk transparency measurements. Phosphorus samples are also recommended from both the in-lake and the tributary sampling sites. When tributary samples are collected, stream flow measurements should be included whenever possible.

4) In general, the 2007 Chocorua Lake water quality remained high and exhibited some of the higher water quality measurements on record: low chlorophyll a concentrations, low total phosphorus concentrations and high Secchi Disk transparencies. The lack of significant summer rainfall, coupled with a predominantly forested watershed that affords protection against excessive erosion and excessive nutrient loading, minimized the nutrient loading into Chocorua Lake during the 2007 sampling season. Local efforts should continue to focus on mechanisms that will protect streamside buffers and preserve tracts of
land that are deemed important to protecting water quality and other natural resource features.

5) The Chocorua Lake Association should continue to inspect the berms, swales and the rip-rap culverts along the Route 16 travel corridor this spring to ensure they have not become overly “clogged” with sediment and other debris. The ability of the best management practices to mitigate the nutrient and sediment load lies in a regularly scheduled inspection and maintenance plan.

The Chocorua Lake Association should also work with the local road agent to ensure the outslopes (water diversion ditches) and other erosion control measures are functioning on the gravel road system along the westerly, Stratton Brook, drainage of Chocorua Lake. The Stratton Brook tributary system has the potential of delivering a significant amount of sediment load should heavy runoff and concurrent erosion displace sediments and nutrients into the brook which subsequently feeds into Chocorua Lake.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>I</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>II</td>
</tr>
<tr>
<td>CHOCORUA LAKE</td>
<td>III</td>
</tr>
<tr>
<td>2007 NON-TECHNICAL SUMMARY</td>
<td>III</td>
</tr>
<tr>
<td>CHOCORUA LAKE</td>
<td>VI</td>
</tr>
<tr>
<td>2007 EXECUTIVE SUMMARY</td>
<td>VI</td>
</tr>
<tr>
<td>COMMENTS AND RECOMMENDATIONS</td>
<td>X</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>XII</td>
</tr>
<tr>
<td>REPORT FIGURES</td>
<td>XIV</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>The New Hampshire Lakes Lay Monitoring Program</td>
<td>1</td>
</tr>
<tr>
<td>Importance of Long-term Monitoring</td>
<td>3</td>
</tr>
<tr>
<td>Purpose and Scope of This Effort</td>
<td>4</td>
</tr>
<tr>
<td>CLIMATIC SUMMARY - 2007</td>
<td>6</td>
</tr>
<tr>
<td>Water Quality and the Weather</td>
<td>6</td>
</tr>
<tr>
<td>Precipitation (2007)</td>
<td>7</td>
</tr>
<tr>
<td>Temperature (2007)</td>
<td>8</td>
</tr>
<tr>
<td>Water Quality Impacts</td>
<td>9</td>
</tr>
<tr>
<td>Water Transparency and Dissolved “tea” Colored Water</td>
<td>9</td>
</tr>
<tr>
<td>Sediment Loading</td>
<td>10</td>
</tr>
<tr>
<td>Nutrient Loading</td>
<td>11</td>
</tr>
<tr>
<td>Microscopic “Algal” and Macroscopic “Weed” Plant Growth</td>
<td>11</td>
</tr>
<tr>
<td>DISCUSSION OF LAKE AND STREAM MONITORING MEASUREMENTS</td>
<td>12</td>
</tr>
<tr>
<td>Thermal Stratification in the Deep Water Sites</td>
<td>12</td>
</tr>
<tr>
<td>Water Transparency</td>
<td>12</td>
</tr>
<tr>
<td>Chlorophyll *</td>
<td>13</td>
</tr>
<tr>
<td>Turbidity *</td>
<td>13</td>
</tr>
<tr>
<td>Dissolved Color</td>
<td>13</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>14</td>
</tr>
<tr>
<td>Streamflow</td>
<td>14</td>
</tr>
<tr>
<td>pH *</td>
<td>14</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>14</td>
</tr>
<tr>
<td>Specific Conductivity *</td>
<td>15</td>
</tr>
<tr>
<td>Dissolved Oxygen and Free Carbon Dioxide *</td>
<td>15</td>
</tr>
<tr>
<td>Underwater Light *</td>
<td>16</td>
</tr>
<tr>
<td>Indicator Bacteria *</td>
<td>16</td>
</tr>
<tr>
<td>Phytoplankton *</td>
<td>17</td>
</tr>
<tr>
<td>Zooplankton *</td>
<td>17</td>
</tr>
<tr>
<td>Macroinvertebrates *</td>
<td>18</td>
</tr>
<tr>
<td>Fish Condition</td>
<td>18</td>
</tr>
</tbody>
</table>
REPORT FIGURES

Figure 1. LLMP Objectives .. 1
Figure 2. National LLMP Support to Volunteer Monitoring Programs ... 2
Figure 3. Algal Standing Crop: 1988-1992 .. 3
Figure 4. Algal Standing Crop: 1986-1995 ... 4
Figure 5. Lakeport 2 Monthly Precipitation (1980-2007) .. 7
Figure 6. Lakeport 2 Monthly Snowfall (1982-2007) .. 8
Figure 7. Lakeport 2 Monthly Temperature (1984-2007) ... 9
Figure 8. Typical Temperature Conditions: Summer ... 12
Figure 9. Location of the 2007 Chocorua Lake deep sampling station, Site 1 South, Tamworth, New Hampshire .. 28
Figure 10. Chocorua Lake, 2007. Seasonal Secchi Disk (water transparency) and chlorophyll a trends for Site 1 South .. 30
Figure 11. Chocorua Lake, 2007. Seasonal Secchi Disk (water transparency) and dissolved color trends for Site 1 South .. 30
Figure 12. Comparison of the annual Chocorua Lake, Site 1 South, lay monitor Secchi Disk transparency data that have been collected between 1982 and 2007 .. 32
Figure 13. Comparison of the annual Chocorua Lake, Site 1 South, lay monitor chlorophyll a data that have been collected between 1982 and 2007 ... 32
Figure 14. Comparison of the annual Chocorua Lake, Site 1 South, lay monitor total phosphorus data that have been collected between 1999 and 2007 .. 34
INTRODUCTION

The New Hampshire Lakes Lay Monitoring Program

The 2007 sampling season marked the twenty-ninth anniversary for the NH Lakes Lay Monitoring Program (LLMP). The LLMP has grown from a university class project on Chocorua Lake and pilot study on the Squam Lakes to a comprehensive state-wide program with over 500 volunteer monitors and more than 100 lakes participating. Originally developed to establish a database for determining long-term trends of lake water quality for science and management, the program has expanded by taking advantage of the many resources that citizen monitors can provide (Figure 1).

The NH LLMP has gained an international reputation as a successful cooperative monitoring, education and research program. Current projects include: the use of volunteer generated data for non-point pollution studies using high tech analysis system (Geographic Information Systems and Satellite Remote Sensing), and intensive watershed monitoring for the development of watershed nutrient budgets, investigations of water quality and indicator organisms (food web analysis, fish condition, and stream invertebrates). The key ingredients responsible for the success of the program include innovative cost share funding and cost reduction, assurance of credible data, practical sampling protocols and, most importantly, the interest and motivation of our volunteer monitors.

The 2007 sampling season was another exciting year for the New Hampshire Lakes Lay Monitoring Program. National recognition for the high quality of work by you, the volunteer monitors, continued with awards, requests for program information and invitations to speak at national conferences (Table 7).

Figure 1. LLMP Objectives

<table>
<thead>
<tr>
<th>LLMP OBJECTIVES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Lake Water Quality Info. for Change and Trends</td>
</tr>
<tr>
<td>Lake Volunteer Monitoring Training</td>
</tr>
<tr>
<td>Shoreline & Watershed Surveys</td>
</tr>
<tr>
<td>Survey for Non-Native Species</td>
</tr>
<tr>
<td>Tie-In with Youth & Adult Education</td>
</tr>
</tbody>
</table>

Table 7. Awards & Recognition

<table>
<thead>
<tr>
<th>Year</th>
<th>Award Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>NH Environmental Law Council Award</td>
</tr>
<tr>
<td>1984</td>
<td>Governor's Volunteer Award</td>
</tr>
<tr>
<td>1985</td>
<td>CNN Science & Technology Today</td>
</tr>
<tr>
<td>1988</td>
<td>Governor's "Gift" award funded</td>
</tr>
<tr>
<td>1990</td>
<td>NH Journal TV coverage NHPTV</td>
</tr>
<tr>
<td>1991</td>
<td>Renew America Award</td>
</tr>
<tr>
<td></td>
<td>Environmental Success Index</td>
</tr>
<tr>
<td></td>
<td>White House Reception / Briefing</td>
</tr>
<tr>
<td>1992</td>
<td>EPA Administrators Award</td>
</tr>
<tr>
<td></td>
<td>Environmental Exchange Network Listing</td>
</tr>
<tr>
<td>1993</td>
<td>NH Lakes Association Award</td>
</tr>
<tr>
<td>1994</td>
<td>EPA Office of Watersheds Award</td>
</tr>
<tr>
<td>1995</td>
<td>Winnipesaukee Watershed Project</td>
</tr>
<tr>
<td>1998</td>
<td>Governor's Proclamation for 25th Anniversary</td>
</tr>
<tr>
<td>1999</td>
<td>EPA Watershed Academy Host</td>
</tr>
<tr>
<td>2001</td>
<td>Lake Chocorua Project highlighted at national conferences (invited presentations)</td>
</tr>
<tr>
<td>2002</td>
<td>Chocorua Project receives Technical Excellence Award from the North American Lake Management Society</td>
</tr>
<tr>
<td>2003</td>
<td>UNH CE Maynard and Audrey Heckel Extension Fellowship awarded to LLMP</td>
</tr>
<tr>
<td>2004</td>
<td>Participatory Research Model of NH LLMP highlighted at National Water Quality Monitoring Conference</td>
</tr>
<tr>
<td>2006</td>
<td>LLMP Coordinator J. Schloss receives the prestigious Secchi Disk Award from the North American Lakes Management Society</td>
</tr>
<tr>
<td>2007</td>
<td>Lake friendly landscaping manual introduced receives praise from New Hampshire agencies and waterfront landowners.</td>
</tr>
</tbody>
</table>
We are excited by the results of teaming up students, educators and local lake residents through our Multidisciplinary Lakes Management course and our summer Community Mapping with GIS and Watershed Ecology courses that are held annually (the two latter mentioned courses are for educators, community leaders and other interested persons). Some of the lake management recommendations made as part of the student coursework requirements have been successfully implemented by lake associations.

Our active collaboration with the UNH Center for Freshwater Biology continues to drive relevant applied research: The CFB was involved in testing an integrated pest management approach to exotic variable water milfoil control in the Suncook River and was also involved in a study examining the potential to manage exotic milfoil growth using parasitic nematodes.

We continue the research initiated by collaborators Dr. John Sasner and Dr. Jim Haney focusing on how watershed development and our activities on the landscape play a role in creating potentially toxic algae blooms. Analogous to the “red tide” of estuaries, certain blue-green algae (microscopic bacteria) can produce toxins that are health risks to animals and humans.

Additional ongoing research is focusing on the use of satellite imagery as well as on-lake optical devices as a means of determining the water transparency and amount of microscopic plant “algal” growth in our New Hampshire Lakes, particularly blue-green algae. Water quality data, collected by the volunteer monitors, have served as ground truthed data to assess whether or not the satellite imagery shows promise. Data generated through this project have been presented at national conferences and are testament to the high quality data generated by our volunteer monitors.

Recent interest in the success of our NH LLMP participatory research model has resulted in invited presentations at national conferences and provided the basis of a series of articles in the Volunteer Monitor, the national newsletter with a distribution of over 10,000.

We continue to be listed as a model citizen-monitoring program on the Environmental Success Index of Renew America, the Environmental Network Clearinghouse and the National Awards Council for Environmental Sustainability. To date, the approach and methods of the NH LLMP have been adopted by new or existing programs in twenty-four states and eleven countries (Figure 2)!
Importance of Long-term Monitoring

A major goal of our monitoring program is to identify any short or long-term changes in the water quality of the lake. Of major concern is the detection of cultural eutrophication: increases in the productivity of the lake, the amount of algae and plant growth, due to the addition of nutrients from human activities. Changes in the natural buffering capacity of the lakes in the program is also a topic of great concern, as New Hampshire receives large amounts of acid precipitation, yet most of our lakes contain little mineral content to neutralize this type of pollution.

For over two decades, weekly data collected from lakes participating in the New Hampshire Lakes Lay Monitoring Program have indicated there is quite a variation in water quality indicators through the open water season (April through November) on the majority of lakes. Short-term differences may be due to variations in weather, lake use, or other chance events. Monthly sampling of a lake during a single summer provides some useful information, but there is a greater chance that important short-term events such as algal blooms or the lake's response to storm run-off will be missed. These short-term fluctuations may be unrelated to the actual long-term trend of a lake or they may be indicative of the changing status or "health" of a lake.

Consider the hypothetical data depicted in Figure 3. Limiting sampling to only once a year during August, from 1988 to 1992, produced a plot suggesting a decrease in eutrophication. However, the actual long-term term trend of the lake, increasing eutrophication, can only be clearly discerned by frequent sampling over a ten-year period (Figure 4). In this instance, the information necessary to distinguish between short-term fluctuations "noise" and long-term trends "signal" could only be accomplished through the frequent collection of water quality data over many years. To that end, the establishment of a long-term database was essential to determining trends in water quality.
The number of seasons it takes to distinguish between the “noise” and the signal is not the same for each lake. Evaluation and interpretation of a long-term database will indicate that the water quality of the lake has worsened, improved, or remained the same. In addition, different areas of a lake may show a different response. As more data are collected, predictions of current and future trends can be made. No matter what the outcome, this information is essential for the intelligent management of your lake.

There are also short-term uses for lay monitoring data. The examination of different stations in a lake can disclose the location of specific problems and corrective action can be initiated to handle the situation before it becomes more serious. On a lighter note, some associations post their weekly data for use in determining the best depths for finding fish!

It takes a considerable amount of effort as well as a deep concern for one’s lake to be a volunteer in the NH Lakes Lay Monitoring Program. Many times a monitor has to brave inclement weather or heavy boat traffic to collect samples. Sometimes it even may seem that one week’s data is just the same as the next week’s data. Yet every sampling provides important information on the variability of the lake.

We are pleased with the interest and commitment of our Lay Monitors and are proud that their work is what makes the NH LLMP the most extensive, and we believe, the best volunteer program of its kind.

Purpose and Scope of This Effort

The primary purpose of annual lake reporting is to discuss results of the current monitoring season with emphasis on current conditions of New Hampshire lakes including the extent of eutrophication and the lakes’ susceptibility to increasing acid precipitation. If there are additional water quality concerns we advise the lake association to contact our program staff to discuss additional monitoring options. When applicable we also strive to place the recent results into a historical context using past NH LLMP data as well as historical data from other sources. This information is part of a large data base of historical and more recent data compiled and entered onto our computer files for New Hampshire lakes that include New Hampshire Fish and Game surveys of the 1930’s through the 1950’s, the surveys conducted by the New Hampshire Water Supply and Pollution Control Commission and the CFB/FBG surveys. However, care
must be taken when comparing current results with early studies. Many complications arise due to methodological differences of the various analytical facilities and technological improvements in testing.
Climatic Summary - 2007

Water Quality and the Weather

Water quality variations are commonly observed over the course of the year and among years in our New Hampshire lakes, ponds, wetlands and streams. The most commonly noticed changes are those associated with decreasing water clarities, increasing algal growth (greenness), and increasing plant growth around the lake’s periphery. Over the long haul, changes such as these are attributed to a lake’s natural aging process that is referred to as “eutrophication”. However, short-term water quality changes such as those mentioned above are often encountered even in our most pristine lakes and ponds. These water quality changes often coincide with variations in weather patterns that include precipitation and temperature fluctuations, and even variations in the sunlight intensity can accelerate or suppress the photosynthetic process.

Climatic “swings” can have a profound effect on water quality, sometimes positive and other times negative. For instance, 1996 was a wet year relative to other years of LLMP water quality monitoring. This translated into reduced water clarities, elevated microscopic plant “algal” growth and increased total phosphorus concentrations for most participating LLMP lakes. “Excessive” runoff associated with wet periods often facilitates the transport of pollutants such as nutrients (including phosphorus), sediment, dissolved colored compounds, as well as toxic materials such as herbicides, automotive oils, etc. into water bodies. As a result, lakes often respond with shallower water clarities and elevated algal abundance (greenness) during these periods as evidence by historical monitoring through the NH LLMP. Similarly, short-term storm events can have a profound effect on the water quality. Take for instance the “100 year storm” (October 21-22, 1996) that blanketed southern New Hampshire with approximately 6 inches of rain over a 30-hour period. This storm resulted in increased sedimentation and organic matter loading into our lakes as materials were flushed into the water bodies from the adjacent uplands. Likewise, the heavy rains that saturated the soil and resulted in flood conditions in June 1998 (heaviest rains occurring on June 12 and 13) resulted in significantly shallower water transparency readings in the weeks to months that followed. While events such as the October 1996 and the June 1998 storms are short lived, they can have a profound effect on our water quality in the weeks to months that follow, particularly when nutrients that stimulate plant growth are retained in the lake.

NH LLMP data collected during dry years such as 1985 and 2001, on the other hand, have coincided with improved water quality for many New Hampshire lakes. Reduced pollutant transport into the lake often results in higher water quality measured as deeper water transparencies, lower microscopic plant “algae” concentrations and lower nutrient concentrations. Do all lakes experience poorer water quality as a result of heavy precipitation events? Simply stated, the answer is no. While most New Hampshire lakes are characterized by reduced water clarities, increased nutrients and elevated plant “algal” concentrations following periods, or years, of heavy precipitation, a handful of lakes actually benefit from these types of events. The water bodies that improve during wet periods are generally lakes characterized by high nutrient concentrations and high “algal” concentrations that are diluted by watershed runoff and thus benefit during periods, or years, of heavy rainfall. However, these more nutrient en-
riched lakes remain susceptible to nutrients entering the lake from seepage sources such as poorly functioning septic systems.

Precipitation (2007)

The 2007 annual precipitation (reported as “rainfall” water equivalent) measured 43.18 inches and was near the 29 year, 1979-2007, average of 42.45 inches (note: precipitation data are reported for the Lakeport 2 Climatological sampling station located in Laconia New Hampshire: 43°33’N and 71°28’W). The monthly precipitation totals documented during the months of January and February were well below average while the March precipitation total was near normal (Figure 5). Heavy rainfall events during the month of April culminated in 7.58 inches of total monthly precipitation that was approximately twice the long-term average and that resulted in periods of heavy spring watershed runoff. Below average rainfall again characterized the months of May and June, and the months of August and September while the July monthly rainfall was slightly above average. More normal precipitation returned in October followed by above average precipitation during the months of November and December. The relatively dry summer months, that followed the heavy spring runoff period, were characterized by limited watershed runoff and low-flow to dry streambed conditions in many of our streams.

Figure 5: Lakeport 2 Climatological Sampling Station (Laconia, NH)
Monthly Precipitation (1979-2007)
Temperature (2007)

Similar to the impact of precipitation extremes, temperature extremes can have far reaching effects on the water quality, particularly early in the year and during the summer months. Atypically warm periods can account for a rapid snowpack melt resulting in flooding and a massive influx of materials (e.g. nutrients, sediments) into our lakes during the late winter and early spring months. Early spring runoff periods coincide with minimal vegetative cover (that acts as a pollutant filter and soil stabilizer) and thus leaves the landscape highly susceptible to erosion. As we progress into the summer months, atypically warm periods can enhance both microscopic “algal” and macroscopic aquatic “weed” plant growth. During the summer growing season, above average temperatures often result in algal blooms that can reach nuisance proportions under optimal conditions. These nuisance blooms can include surface algal “scums” that cover the lake and wash up on the windward lakeshores.

During years such as 1994 and 1995, when above average temperatures characterized the summer months, participating NH LLMP lakes were generally characterized by increased algal concentrations, particularly in the shallows, where filamentous cotton-candy-like clouds of algae (i.e. Mougeotia) flourished. Other NH LLMP lakes had increased algal growth (greenness) and shallower water transparencies during these “hot” periods.

The January 2007 average monthly temperature was over three degrees warmer than the twenty-four year average while the February, March and April, 2007 average monthly temperatures were below the twenty-four year average (Figure 6). The above average temperatures and below average precipitation during the month of January limited the amount of snowfall (Figure 6) that might have otherwise accumulated under subzero temperature conditions. However, below average temperatures during the months of February and March were conducive to snowfall and snowpack accumulations that subsequently contributed to heavy periods of runoff in April; heavy spring

![Figure 6: Lakeport 2 Climatological Sampling Station (Laconia, NH)
Monthly Temperature (1984-2007)](image-url)
runoff was exacerbated by the above normal April precipitation total previously discussed. The monthly temperature averages documented between April and November, with the exception of an atypically warm month of October, varied from near average temperatures to slightly above or slightly below average temperatures (Figure 6). Below average temperatures and above average December precipitation lead to an unusually high December snowfall that totaled 36.8 inches (Figure 7).

Figure 7: Lakeport 2 Climatological Sampling Station (Laconia, NH)

Monthly Snowfall (1982-2007)

![Graph showing monthly snowfall from January to December with data from 1982-2007.]

Water Quality Impacts

Water Transparency and Dissolved “tea” Colored Water

As previously mentioned, shallower water transparency readings are characteristic of most New Hampshire lakes during wet years and following short term precipitation events. Wet periods often coincide with greater concentrations of dissolved “tea” colored compounds (dissolved organic matter resulting from the breakdown of vegetation and soils) washed in from surrounding forests and wetlands. Dissolved water color is not indicative of water quality problems (although large increases in dissolved color sometimes follow large land clearing operations) but in some of our more pristine program lakes, it nevertheless has a large effect on water clarity changes. Data collected by the Center for Freshwater Biology (CFB) since 1985 indicate most lakes are characterized by higher dissolved “tea” colored water during wet years relative to years more typical in terms of annual precipitation levels. In some of our more highly “tea” colored lakes the early spring months are also characterized by higher dissolved color concentrations, relative to mid-summer levels, due to the heavy runoff periods that
flush highly colored water into our lakes during the period of spring snowmelt and following heavy spring rains.

Sediment Loading

Sediments are continuously flushed into our lakes and ponds during periods of heavy watershed runoff, particularly during snowmelt and again during and following sporadic storm events during the summer and fall months. Many New Hampshire lakes experience water clarity decreases following storm events such as those described above. Lakes, ponds and rivers are particularly susceptible to sediment loadings in the early spring months when vegetated shoreline buffers, often referred to as riparian buffers, are reduced. With limited vegetation to trap sediments and suspended materials, a high percentage of the particulate debris and dissolved materials are flushed into the lake. Human activities such as logging, agriculture, construction and land clearing can also increase sediment displacement during and following heavy storm events throughout the year. These activities are often associated with excessive sediment loading in many of our lakes and ponds. As these materials (sediments) are transported into surface waters they can degrade water quality in a number of ways. When fine sediments (silt) enter a lake they tend to remain in the water column for relatively long periods of time. These suspended sediments can be abrasive to fish gills, ultimately leading to fish kills. Suspended sediments also reduce the available light necessary for plant growth that can result in plant die-offs and the subsequent oxygen depletion under extreme conditions.

As sediments settle out of the water column they can smother bottom dwelling aquatic organisms and fish spawning habitat. As the dead materials begin to decay the result can be noxious odors as well as stimulation of nuisance plant growth (i.e. scums along the lake-bottom; new macroscopic plant growth). Note: one should keep in mind that nuisance plants such as water milfoil (*Myriophyllum heterophyllum*) will generally regenerate more rapidly than more favorable plant forms. This can result in more problematic weed beds than those present before the disturbance. Habitat changes associated with the accumulation of fine sediments and associated “muck” might also favor increased nuisance plant growth in the future. Another unfavorable attribute of sediment loading is that the sediments tend to carry with them other forms of contaminants such as pathogens, nutrients and toxic chemicals (i.e. herbicides and pesticides).

Early symptoms of excessive sediment runoff include deposits of fine material along the lake-bottom, particularly in close proximity to tributary inlets and disturbed regions previously discussed (i.e. construction sites, logging sites, etc.). Silt may be visible covering rocks or aquatic vegetation along the lake-bottom. During periods of heavy overland runoff the water might appear brown and turbid which reflects the sediment load. As material collects along the lake-bottom you might notice a change in the weed composition reflecting a change in the substrate type (note: aquatic plants will display natural changes in abundance and distribution, so be careful not to jump to hasty conclusions). If excessive sediment loading is suspected, take a closer look in these areas and assess whether or not the change is associated with sediment loading (look for the warning signs discussed above) or whether the changes might be attributable to other factors.
Nutrient Loading

Nutrient loading is often greatest during heavy precipitation events, particularly during the periods of heavy watershed runoff. Phosphorus is generally considered the limiting nutrient for excessive plant and algal growth in New Hampshire lakes. Elevated phosphorus concentrations are generally most visible when documented in our tributary inlets where nutrients are concentrated in a relatively small volume of water. Much of the phosphorus entering our lakes is attached to particulate matter (i.e. sediments, vegetative debris), but may also include dissolved phosphorus associated with fertilizer applications and septic system discharge.

Microscopic “Algal” and Macroscopic “Weed” Plant Growth

Historical Lakes Lay Monitoring Program data indicate most lakes experience "algal blooms" during years with above average summer temperatures (June, July and August) while years with heavy precipitation are also associated with an increased frequency and occurrence of “algal blooms”. “Algal blooms” are often green water events associated with decreases in water clarity due to their ability to absorb and scatter light within the water column, but can also accumulate near the lake bottom in shallow areas as "mats" or on the water surface as "scums" and "clouds". During some years, such as 1996, the “algal blooms” are predominantly green water events composed of algae distributed within the water column. New Hampshire lakes were particularly susceptible to algal blooms in 1996 as a function of the heavy runoff associated with an atypically wet year. Wet years such as 1996 can be particularly hard on lakes where excessive fertilizer applications, agricultural practices and construction activities favor the displacement of nutrients into surface waters. The occasional formation of certain algal blooms is a naturally occurring phenomenon and is not necessarily associated with changes in lake productivity. However, increases in the occurrence of bloom conditions can be a sign of eutrophication (the "greening" of a lake). Shifts from benign (clean water) forms to nuisance (polluted water) cyanobacterial forms such as *Anabaena*, *Aphanizomenon* and *Oscillatoria*, can also be a warning sign that improper land use practices are contributing excessive nutrients into the lake.

Filamentous cotton-candy-like "clouds" of the nuisance green algae, *Mougeotia* and related species, have been well documented in 1994 and 1995 when the temperatures during the months of June and July were well above normal. These algal “clouds” often develop within nearshore weed beds where they can be seen along the lake-bottom and tend to flourish during warm periods. During cooler years, this type of algal growth is kept “in check” and generally does not reach nuisance proportions. In other lakes, metalimnetic algae, algae which tend to grow in a thin layer along the thermocline gradient in a lake's middle depths, sometimes migrate up towards the lake surface causing a "bloom" event. If these algae are predominantly "nuisance" forms, like certain green or blue-green algae, they can be an early indication of nutrient loading.
DISCUSSION OF LAKE AND STREAM MONITORING MEASUREMENTS

The section below details the important concepts involved for the various testing procedures used in the New Hampshire Lakes Lay Monitoring Program. Certain tests or sampling performed at the time of the optional Center for Freshwater Biology field trip are indicated by an asterisk (*).

Thermal Stratification in the Deep Water Sites

Lakes in New Hampshire display distinct patterns of temperature stratification, that develop as the summer months progress, where a layer of warmer water (the epilimnion) overlies a deeper layer of cold water (hypolimnion). The layer that separates the two regions characterized by a sharp drop in temperature with depth is called the thermocline or metalimnion (Figure 8). Some shallow lakes may be continually mixed by wind action and will never stratify. Other lakes may only contain a developed epilimnion and metalimnion.

Water Transparency

Secchi Disk depth is a measure of the water transparency. The deeper the depth of Secchi Disk disappearance, the more transparent the lake water; light penetrates deeper if there is little dissolved and/or particulate matter (which includes both living and non-living particles) to absorb and scatter it.

In the shallow areas of many lakes, the Secchi Disk will hit bottom before it is able to disappear from view (what is referred to as a "Bottom Out" condition). Thus, Secchi Disk measurements are generally taken over the deepest sites of a lake. Transparency values greater than 4 meters are typical of clear, unproductive lakes while transparency values less than 2.5 meters are generally an indication of highly productive lakes. Water transparency values between 2.5 meters and 4 meters are generally considered indicative of moderately productive lakes.
Chlorophyll a

The chlorophyll a concentration is a measurement of the standing crop of phytoplankton and is often used to classify lakes into categories of productivity called trophic states. Eutrophic lakes are highly productive with large concentrations of algae and aquatic plants due to nutrient enrichment. Characteristics include accumulated organic matter in the lake basin and lower dissolved oxygen in the bottom waters. Summer chlorophyll a concentrations average above 7 mg m3 (7 milligrams per cubic meter; 7 parts per billion). Oligotrophic lakes have low productivity and low nutrient levels and average summer chlorophyll a concentrations that are generally less than 3 mg m3. These lakes generally have cleaner bottoms and high dissolved oxygen levels throughout. Mesotrophic lakes are intermediate in productivity with concentrations of chlorophyll a generally between 3 mg m3 and 7 mg m3. Testing is sometimes done to check for metalimnetic algal populations, algae that layer out at the thermocline and generally go undetected if only epilimnetic (point or integrated) sampling is undertaken. Chlorophyll concentrations of a water sample collected in the thermocline is compared to the integrated epilimnetic sample. Greater chlorophyll levels of the point sample, in conjunction with microscopic examination of the samples (see Phytoplankton section below), confirm the presence of such a population of algae. These populations should be monitored as they may be an indication of increased nutrient loading into the lake.

Turbidity *

Turbidity is a measure of suspended material in the water column such as sediments and planktonic organisms. The greater the turbidity of a given water body the lower the Secchi Disk transparency and the greater the amount of particulate matter present. Turbidity is measured as nephelometric turbidity units (NTU), a standardized method among researchers. Turbidity levels are generally low in New Hampshire reflecting the pristine condition of the majority of our lakes and ponds. Increasing turbidity values can be an indication of increasing lake productivity or can reflect improper land use practices within the watershed which destabilize the surrounding landscape and allow sediment flushing into the lake.

While Secchi Disk measurements will integrate the clarity of the water column from the surface waters down to the depth of disappearance, turbidity measurements are collected at discrete depths from the surface down to the lake bottom. Such discrete sampling can identify layering algal populations (previously discussed) that are undetectable when measuring Secchi Disk transparency alone.

Dissolved Color

The dissolved color of lakes is generally due to dissolved organic matter from humic substances, which are naturally-occurring polyphenolic compounds leached from decayed vegetation. Highly colored or "stained" lakes have a "tea" color. Such substances generally do not threaten water quality except as they diminish sunlight penetration into deep waters. Increases in dissolved watercolor can be an indication of increased development within the watershed as many land clearing activities (construction, deforestation, and the resulting increased run-off) add additional organic material to lakes. Natural fluctuations of dissolved color occur when storm events increase drainage from wetlands areas within the watershed. As suspended sediment is a diffi-
cult and expensive test to undertake, both dissolved color and chlorophyll information are important when interpreting the Secchi Disk transparency.

Dissolved color is measured on a comparative scale that uses standard chloroplatinate dyes and is designated as a color unit or ptu. Lakes with color below 10 ptu are very clear, 10 to 20 ptu are slightly colored, 20 to 40 ptu are lightly tea colored, 40 to 80 ptu are tea colored and greater than 80 ptu indicates highly colored waters. Generally the majority of New Hampshire lakes have color between 20 to 30 ptu.

Total Phosphorus

Of the two "nutrients" most important to the growth of aquatic plants, nitrogen and phosphorus, it is generally observed that phosphorus is the more limiting to plant growth, and therefore the more important to monitor and control. Phosphorus is generally present in lower concentrations, and its sources arise primarily through human related activity in a watershed. Nitrogen can be fixed from the atmosphere by many bloom-forming blue-green bacteria, and thus it is difficult to control. The total phosphorus includes all dissolved phosphorus as well as phosphorus contained in or adhered to suspended particulates such as sediment and plankton. As little as 10 parts per billion of phosphorus in a lake can cause an algal bloom.

Generally, in the more pristine lakes, phosphorus values are higher after spring melt when the lake receives the majority of runoff from its surrounding watershed. The nutrient is used by the algae and plants which in turn die and sink to the lake bottom causing surface water phosphorus concentrations to decrease as the summer progresses. Lakes with nutrient loading from human activities and sources (Agriculture, Logging, Sediment Erosion, Septic Systems, etc.) will show greater concentrations of nutrients as the summer progresses or after major storm events.

Streamflow

Streamflow, when collected in conjunction with stream channel information, is a measure of the volume of water traversing a given stream stretch over a period of time and is often expressed as cubic meters per second. Knowledge of the streamflow is important when determining the amount of nutrients and other pollutants that enter a lake. Knowledge of the streamflow in conjunction with nutrient concentrations, for instance, will provide the information necessary to calculate phosphorus loading values and will in turn be useful in discerning the more impacted areas within a watershed.

pH

The pH is a way of expressing the acidic level of lake water, and is generally measured with an electrical probe sensitive to hydrogen ion activity. The pH scale has a range of 1 (very acidic) to 14 (very "basic" or alkaline) and is logarithmic (i.e.: changes in 1 pH unit reflect a ten times difference in hydrogen ion concentration). Most aquatic organisms tolerate a limited range of pH and most fish species require a pH of 5.5 or higher for successful growth and reproduction.

Alkalinity

Alkalinity is a measure of the buffering capacity of the lake water. The higher the value the more acid that can be neutralized. Typically lakes in New Hampshire
have low alkalinites due to the absence of carbonates and other natural buffering minerals in the bedrock and soils of lake watersheds.

Decreasing alkalinity over a period of a few years can have serious effects on the lake ecosystem. In a study on an experimental acidified lake in Canada by Schindler, gradual lowering of the pH from 6.8 to 5.0 in an 8-year period resulted in the disappearance of some aquatic species, an increase in nuisance species of algae and a decline in the condition and reproduction rate of fish. During the first year of Schindler's study the pH remained unchanged while the alkalinity declined to 20 percent of the pretreatment value. The decline in alkalinity was sufficient to trigger the disappearance of zooplankton species, which in turn caused a decline in the "condition" of fish species that feed on the zooplankton.

The analysis of alkalinity employed by the Center for Freshwater Biology includes use of a dilute titrant allowing an order of magnitude greater sensitivity and precision than the standard method. Two endpoints are recorded during each analysis. The first endpoint (gray color of dye; pH endpoint of 5.1) approximates low level alkalinity values, while the second endpoint (pink dye color; pH endpoint of 4.6) approximates the alkalinity values recorded historically, such as NH Fish and Game data, with the methyl-orange endpoint method.

The average alkalinity of lakes throughout New Hampshire is low, approximately 6.5 mg per liter (calcium carbonate alkalinity). When alkalinity falls below 2 mg per liter the pH of waters can greatly fluctuate. Alkalinity levels are most critical in the spring when acid loadings from snowmelt and run-off are high, and many aquatic species are in their early, and most susceptible, stages of their life cycle.

Specific Conductivity *

The specific conductance of a water sample indicates concentrations of dissolved salts. Leaking septic systems and deicing salt runoff from highways can cause high conductivity values. Fertilizers and other pollutants can also increase the conductivity of the water. Conductivity is measured in micromhos (the opposite of the measurement of resistance ohms) per centimeter, more commonly referred to as micro-Siemens (μS).

Dissolved Oxygen and Free Carbon Dioxide *

Oxygen is an essential component for the survival of aquatic life. Submergent plants and algae take in carbon dioxide and create oxygen through photosynthesis by day. Respiration by both animals and plants uses up oxygen continually and creates carbon dioxide. Dissolved oxygen profiles determine the extent of declining oxygen concentrations in the lower waters. High carbon dioxide values are indicative of low oxygen conditions and accumulating organic matter. For both gases, as the temperature of the water decreases, more gas can be dissolved in the water.

The typical pattern of clear, unproductive lakes is a slight decline in hypolimnetic oxygen as the summer progresses. Oxygen in the lower waters is important for maintaining a fit, reproducing, cold water fishery. Trout and salmon generally require oxygen concentrations above 5 mg per liter (parts per million) in the cool deep waters. On the other hand, carp and catfish can survive very low oxygen conditions. Oxygen above the lake bottom is important in limiting the release of nutrients from the sediments and minimizing the collection of undecomposed organic matter.
Bacteria, fungi and other decomposers in the bottom waters break down organic matter originating from the watershed or generated by the lake. This process uses up oxygen and produces carbon dioxide. In lakes where organic matter accumulation is high, oxygen depletion can occur. In highly stratified eutrophic lakes the entire hypolimnion can remain unoxygenated or anaerobic until fall mixing occurs.

The oxygen peaks occurring at surface and mid-lake depths during the day are quite common in many lakes. These characteristic heterograde oxygen curves are the result of the large amounts of oxygen, the by-product of photosynthesis, collecting in regions of high algal concentrations. If the peak occurs in the thermocline of the lake, metalimnetic algal populations (discussed above) may be present.

Underwater Light *

Underwater light available to photosynthetic organisms is measured with an underwater photometer which is much like the light meter of a camera (only water-proofed!). The photic zone of a lake is the volume of water capable of supporting photosynthesis. It is generally considered to be delineated by the water's surface and the depth that light is reduced to one percent surface iridescence by the absorption and scattering properties of the lake water. The one percent depth is sometimes termed the compensation depth. Knowledge of light penetration is important when considering lake productivity and in studies of submerged vegetation. Discontinuity (abrupt changes in the slope) of the profiles could be due to metalimnetic layering of algae or other particulates (discussed above). The underwater photometer allows the investigator to measure light at depths below the Secchi Disk depth to supplement the water clarity information.

Indicator Bacteria *

Certain disease causing organisms, pathogenic bacteria, viruses and parasites, can be spread through contact with polluted waters. Faulty septic systems, sewer leaks, combined sewer overflows and the illegal dumping of wastes from boats can contribute fecal material containing these pathogens. Typical water testing for pathogens involves the use of detecting coliform bacteria. These bacteria are not usually considered harmful themselves but they are relatively easy to detect and can be screened for quickly. Thus, they make good surrogates for the more difficult to detect pathogens.

Total coliform includes all coliform bacteria that arise from the gut of animals or from vegetative materials. Fecal coliform are those specific organisms that inhabit the gut of warm blooded animals. Another indicator organism Fecal streptococcus (sometimes referred to as enterococcus) also can be monitored. The ratio of fecal coliform to fecal strep may be useful in suggesting the type of animal source responsible for the contamination. In 1991, the State of New Hampshire changed the indicator organism of preference to E. Coli which is a specific type of fecal coliform bacteria thought to be a better indicator of human contamination. The new state standard requires Class A “bathing waters” to be under 88 organisms (referred to as colony forming units; cfu) per 100 milliliters of lakewater.

Ducks and geese are often a common cause of high coliform concentrations at specific lake sites. While waterfowl are important components to the natural and aesthetic qualities of lakes that we all enjoy, it is poor management practice to encourage these birds by feeding them. The lake and surrounding area provides enough healthy
and natural food for the birds and feeding them stale bread or crackers does nothing more than import additional nutrients into the lake and allows for increased plant growth. As birds also are a host to the parasite that causes "swimmers itch", waterfowl roosting areas offer a greater chance for infestation to occur. Thus while leaving offerings for our feathered friends is enticing, the results can prove to be detrimental to the lake system and to human health.

Phytoplankton

The planktonic community includes microbial organisms that represent diverse life forms, containing photosynthetic as well as non-photosynthetic types, and including bacteria, algae, crustaceans and insect larvae (the insect larvae and zooplankton are discussed below in separate sections). Because planktonic algae or "phytoplankton" tend to undergo rapid seasonal cycles on a time scale of days and weeks, the levels of populations found should be considered to be most representative of the time of collection and not necessarily of other times during the ice-free season, especially the early spring and late fall periods.

The composition and concentration of phytoplankton can be indicative of the trophic status of a lake. Seasonal patterns do occur and must be considered. For example diatoms, tend to be most abundant in April-June and October-November, in the surface or epilimnetic layers of New Hampshire lakes. As the summer progresses, the dominant types might shift to green algae or golden algae. By late season blue-green bacteria generally dominate. In nutrient rich lakes, nuisance green algae and/or bluegreen bacteria might dominate continually. After fall mixing diatoms might again be found to bloom.

Zooplankton

There are three groups of zooplankton that are generally prevalent in lakes: the protozoa, rotifers and crustaceans. Most research has been devoted to the last two groups although protozoa may be found in substantial amounts. Of the rotifers and the crustaceans, time and budgetary constraints usually make it necessary to sample only the larger zooplankton (macrozooplankton; larger than 80 or 150 microns; 1 million microns make up a meter). Thus, zooplankton analysis is generally restricted only to the larger crustaceans. Crustacean zooplankton are very sensitive to pollutants and are commonly used to indicate the presence of toxic substances in water. The crustaceans can be divided into two groups, the cladocerans (which include the "water fleas") and the copepods.

Macrozooplankton are an important component in the lake system. The filter feeding of the herbivorous ("graazing") species may control the population size of selected species of phytoplankton. The larger zooplankton can be an important food source for juvenile and adult planktivorous fish. All zooplankton play a part in the recycling of nutrients within the lake. Like the phytoplankton, zooplankton, tend to undergo rapid seasonal cycles. Thus, the zooplankton population density and diversity should be considered to be most representative of the time of collection and not necessarily of other times during the ice-free season, especially the early spring and late fall periods.
Macroinvertebrates *

Macroinvertebrates generally refer to the aquatic insect community living near the bottom substrate (i.e. sediments) while other invertebrate groups such as the crayfish, leeches and the aquatic worms are also included. Like the phytoplankton and zooplankton, previously discussed, the macroinvertebrates undergo seasonal cycles and are most representative of conditions for particular periods of the year. The mayflies are probably the most well known example of a seasonal aquatic macroinvertebrate as mayfly populations metamorphose into adults as the water temperatures increase in the spring and thus giving rise to the name “mayflies”. Macroinvertebrates are also sensitive to environmental conditions such as streamflow, temperature and food availability and are most representative of particular habitats along the stream continuum (i.e. some organisms prefer slower moving stream reaches while others prefer rapidly flowing waters).

Macroinvertebrates are an essential component to a healthy aquatic habitat. Macroinvertebrates help decompose organic matter entering the system such as leaves and twigs and also serve as a food source for many fish species.

While some macroinvertebrates are capable of breathing air as we do, others have gills and utilize oxygen dissolved in the water much as fish do. Macroinvertebrates also vary in their tolerance to depleting dissolved oxygen concentrations making them a good indicator of pollutants coming into the water body. The caddis flies (Trichop-tera), the mayflies (Ephemeroptera) and the stoneflies (Plecoptera) are often considered highly sensitive to pollution while the “true” flies (Diptera) are often considered highly tolerant to pollution. However, exceptions to the above categorizations are often encountered.

A variety of indices have been proposed to characterize water bodies over a gradient of pollution levels ranging from least polluted to most polluted scenarios and often designated by assigning a numerical delineator (i.e. 1 is least polluted while 10 is most polluted). Such an index, the Hilsenhoff Biotic Index (HBI), or a modification thereof, is commonly used by stream monitoring programs around the country. Macroinvertebrate data are useful in discerning the more impacted areas within the watershed where corrective efforts should be directed. Unlike chemical measurements that represent ambient conditions in the water body, the macroinvertebrate community composition integrates the water quality conditions over a longer period (months to years) and can identify “hot” spots missed by chemical sampling. If you are interested in more information regarding macroinvertebrate monitoring contact the LLMP coordinator.

Fish Condition

The assessment of fish species “health” is another biological indicator of water quality. Because fish are at the top of the food chain, their condition should reflect not only water quality changes that affect them directly but also those changes that affect their food supply. The fish condition index utilized by the New Hampshire Fish Condition Program is based on two components; fish scale analysis and a fish condition index.

Like tree trunks, fish scales have annual growth rings (annuli) that reflect their growth history and hence, provide a long-term record of past conditions in the lake. The fish condition index, based upon length and weight measurements, is a good indicator of the fish’s health at the time of collection.
The resulting fish condition data can be compared among different lakes or among different years, or the index for a particular species can be compared to standard length-to-weight relationships that have been developed by fisheries biologists for many important fish species. In the end, the "health" of the various fish species reflects the overall water quality in the respective lake or pond.
Understanding Lake Aging
(Eutrophication)

by: Robert Craycraft Educational Program Coordinator, New Hampshire Lakes Lay Monitoring Program University of New Hampshire G18 Spaulding Hall, Durham, NH 03824 603-862-3696 FAX: 603-862-0107 email: bob.craycraft@unh.edu

and Jeff Schloss UNH Cooperative Extension Water Resources Specialist

A common concern among New Hampshire Lakes Lay Monitoring Program (NH LLMP) participants is a perceived increase in the density and abundance of aquatic plants in the shallows, increases in the amount of microscopic plant “algae” growth (detected as greener water), and water transparency decreases; what is known as eutrophication. Eutrophication is a natural process by which all lakes age and progress from clear pristine lakes to green, nutrient enriched lakes on a geological time frame of thousands of years. Much like the fertilizers applied to our lawns, nutrients that enter our lakes stimulate plant growth and culminate in greener (and in turn less clear) waters. Some lakes age at a faster rate than others due to naturally occurring attributes: watershed area relative to lake area, slope of the land surrounding the lake, soil type, mean lake depth, etc. Since our New Hampshire lakes were created during the last ice-age, which ended about 10,000 years ago, we should have a natural continuum of lakes ranging from extremely pristine to very enriched.

Classification criteria are often used to categorize lakes into what are known as trophic states, in other words, levels of lake plant and algae productivity or “greenness” Refer to Table 8 below for a summary of commonly used eutrophication parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oligotrophic “pristine”</th>
<th>Mesotrophic “transitional”</th>
<th>Eutrophic “enriched”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll a (ug/l) *</td>
<td><3.0</td>
<td>3.0-7.0</td>
<td>>7.0</td>
</tr>
<tr>
<td>Water Transparency (meters) *</td>
<td>>4.0</td>
<td>2.5-4.0</td>
<td><2.5</td>
</tr>
<tr>
<td>Total Phosphorus (ug/l) *</td>
<td><15.0</td>
<td>15.0-25.0</td>
<td>>25.0</td>
</tr>
<tr>
<td>Dissolved Oxygen (saturation) #</td>
<td>high to moderate</td>
<td>moderate to low</td>
<td>low to zero</td>
</tr>
<tr>
<td>Macroscopic Plant (Weed) Abundance</td>
<td>low</td>
<td>moderate</td>
<td>high</td>
</tr>
</tbody>
</table>

* Denotes classification criteria employed by Forsberg and Ryding (1980).
Denotes dissolved oxygen concentrations near the lakebottom.
Oligotrophic lakes are considered “unproductive” pristine systems and are characterized by high water clari- ties, low nutrient concentrations, low algae concentrations, minimal levels of aquatic plant “weed” growth, and high dissolved oxygen concentrations near the lake bottom. Eutrophic lakes are considered “highly productive” enriched systems characterized by low water transparencies, high nutrient concentrations, high algae concentrations, large stands of aquatic plants and very low dissolved oxygen concentrations near the lake bottom. Mesotrophic lakes have qualities between those of oligotrophic and eutrophic lakes and are characterized by moderate water transparencies, moderate nutrient concentrations, moderate algae growth, moderate aquatic plant “weed” growth and decreasing dissolved oxygen concentrations near the lake bottom.

Is a pristine, oligotrophic, lake “better than” an enriched, eutrophic, lake? Not necessarily! As indicated above, lakes will naturally exhibit varying degrees of productivity. Some lakes will naturally be more susceptible to eutrophication than others due to their natural attributes and in turn have aged more rapidly. This is not necessarily a bad thing as our best bass fishing lakes tend to be more mesotrophic to eutrophic than oligotrophic; an ultra-oligotrophic lake (extremely pristine) will not support a very healthy cold water fishery. However, human related activities can augment the aging process (what is known as cultural eutrophication) and result in a transition from a pristine system to an enriched system in tens of years rather than the natural transitional period that should take thousands of years. Cultural eutrophication is particularly a concern for northern New England lakes where large tracts of once forested or agricultural lands are being developed, with the potential for increased sediment and nutrient loadings into our lakes, which augment the eutrophication process.

Additionally, other pollutants such as heavy metals, herbicides, insecticides and petroleum products might also affect your lake’s “health”. A “healthy” lake, as far as eutrophication is concerned, is one in which the various aquatic plants and animals are minimally impacted so that nutrients and other materials are processed efficiently. We can liken this process to a well-managed pasture: nutrients stimulate the growth of grasses and other plants that are eaten by grazers like cows and sheep. As long as producers and grazers are balanced, a good amount of nutrients can be processed through the system. Impact the grazers and the grass will overgrow and nuisance weeds will appear, even if nutrients remain the same. In a lake, the producers are the algae and aquatic weeds while the grazers are the microscopic animals (zooplankton) and aquatic insects. These organisms can be very susceptible to a wide range of pollutants at very low concentrations. If impacted, the lake can become much more productive and the fishery will be impacted as well since these same organisms are an important food source for most fish at some stage of their life.

Development upon the landscape can negatively affect water quality in a number of ways:

- **Removal of shore side vegetation and loss of wetlands** - shore side vegetation (what is known as riparian vegetation) and wetlands provide a protective buffer that “traps” pollutants before reaching the lake. These buffers remove materials both chemically (through biological uptake) and physically (settling materials out). As riparian buffers are removed and wetlands lost, pollutant materials are more likely to enter the lake and in turn, favor declining water quality.

- **Excessive fertilizer applications** - fertilizers entering the lake can stimulate aquatic plant and algal growth and in extreme cases result in noxious algal blooms. Increases in algal growth tend to diminish water transparency and under extreme cases culminate in surface “seums” that can wash up on the shoreline producing unpleasant smells as the material decomposes. Excessive nutri-
ent concentrations also favor algal forms known to produce toxins, which irritate the skin and under extreme conditions, are dangerous when ingested.

- **Increased organic matter loading** - organic matter (leaves, grass clippings, etc.) is a major source of nutrients in the aquatic environment. As the vegetative matter decomposes nutrients are “freed up” and can become available for aquatic plant and algal growth. In general, we are not concerned with this material entering the lake naturally (leaf senescence in the fall) but rather excessive loading of this material as occurs when residents dump or rake leaf litter and grass clippings into the lake. This material not only provides large nutrient reserves which can stimulate aquatic plant and algal growth but also makes great habitat for leaches and other potentially undesirable organisms in swimming areas.

- **Septic problems** - faulty septic systems are a big concern as they can be a primary source of water pollution around our lakes. Septic systems are loaded with nutrients and can also be a health threat when not functioning properly.

- **Loss of vegetative cover and the creation of impervious surfaces** - A forested watershed offers the best protection against pollutant runoff. Trees and tall vegetation intercept heavy rains that can erode soils and surface materials. The roots of these plants keep the soils in place, process nutrients and absorb moisture so the soils do not wash out. Impervious surfaces (paved roads, parking lots, building roofs, etc.) reduce the water’s capacity to infiltrate into the ground, and in turn, go through nature’s water purification system. As water seeps into the soil, pollutants are removed from the runoff through absorption onto soil particles. Biological processes detoxify pollutants and/or immobilize substances. Surface water runoff over impervious surfaces also increases water velocities that favor the transport of a greater load of suspended and dissolved pollutants into your lake.

How can you minimize your water quality impacts?

- Minimize fertilizer applications whenever possible. Most people apply far more fertilizers than necessary, with the excess eventually draining into your lake. This not only applies to those immediately adjacent to the lake but to everybody within the watershed. Pollutants in all areas of the watershed will ultimately make their way into your lake. Have your soil tested for a nominal fee (contact your county UNH Cooperative Extension Office for further information) to find out how much fertilizer and soil amendments and really needed. Sometimes just an application of crushed lime will release enough nutrients to fit the bill. If you do use fertilizer try to use low phosphorus, slow release nitrogen varieties. And remember that under the current NH Comprehensive Shoreline Protection Act (CSPA) you cannot apply any fertilizers or amendments within 25 feet of the shore.

- Don’t dump leaf litter or leaves into the lake. Compost the material or take it to a proper waste disposal center. Do not fill in wetland areas. Do not create or enhance beach areas with sand (contains phosphorus, smothers aquatic habitat, fills in lake as it gets transported away by currents and wind).
• Septic systems will not function efficiently without the proper precautionary maintenance. Have your septic system inspected every two to four years and pumped out when necessary. Since the septic system is such an expensive investment often costing around $10,000 for a complete overhaul, it is advantageous to assure proper care is taken to prolong the system's life. Additionally, following proper maintenance practices will reduce water quality degradation. Refer to:

 http://www.nesc.wvu.edu/nsfc/pdf/pipline/PL_fall04.pdf

• Try to landscape and re-develop with consideration of how water flows on and off your property. Divert runoff from driveways, roofs and gutters to a level vegetated area or a rain garden so the water can be slowed, filtered and hopefully absorbed as recharge. Refer to:

 Landscaping at the Water's Edge: an Ecological Approach. $20.00/ea University of New Hampshire Cooperative Extension Publications Center, Nesmith Hall, 131 Main Street, Durham NH 03824.

 Integrated Landscaping: Following Nature's Lead. $20.00/ea University of New Hampshire Cooperative Extension Publications Center, Nesmith Hall, 131 Main Street, Durham NH 03824

 A Guide to Developing and Re-Developing Shoreland Property in New Hampshire: A Blueprint to Help You Live by the Water. North Country Resource Conservation and Development Area, Inc. 103 Main Street-Suite #1, Meredith NH 03253-9266 (603) 279-6546

• Maintain shore side (riparian) vegetative cover when new construction is undertaken. For those who have pre-existing houses but lack vegetative buffers, consider shoreline plantings aimed at diminishing the pollution load into your lake. Refer to:

 Landscaping at the Water's Edge: an Ecological Approach. $20.00/ea University of New Hampshire Cooperative Extension Publications Center, Nesmith Hall, 131 Main Street, Durham NH 03824.

 A Guide to Developing and Re-Developing Shoreland Property in New Hampshire: A Blueprint to Help You Live by the Water. North Country Resource Conservation and Development Area, Inc. 103 Main Street-Suite #1, Meredith NH 03253-9266 (603) 279-6546

 Buffers for Wetlands and Surface Waters: A Guidebook for New Hampshire Municipalities. Audubon Society of New Hampshire. 3 Silk Farm Road, Concord NH 03301 (603) 224-9909 (free for towns, $5.00 for others).

• Review the New Hampshire Comprehensive Shoreland Protection Act (CSPA) if you have shoreland property. The CSPA sets legal regulations aimed at protecting water quality. If you have any questions regarding the act or need further information contact the Shoreline Protection Act Coordinator at (603) 271-3503.
REFERENCES

Figure 9. Location of the 2007 Chocorua Lake deep sampling station, Site 1 South, Tamworth, New Hampshire.
Chocorua Lake Deep Sampling Site, 1 South.
Figure 10. Chocorua Lake, 2007. Seasonal Secchi Disk (water transparency) and chlorophyll a trends for Site 1 South. The Secchi Disk transparency data are reported to the nearest 0.1 meters while the chlorophyll a data are reported to the nearest 0.1 parts per billion (ppb).

Figure 11. Chocorua Lake, 2007. Seasonal Secchi Disk (water transparency) and dissolved color trends for Site 1 South. The Secchi Disk transparency data are reported to the nearest 0.1 meters while the dissolved color data are reported to the nearest 0.1 chloroplatinate unit (CPU).

Note: the overlay of the Secchi Disk data with chlorophyll a and dissolved color data is intended to provide a visual depiction of the impacts of chlorophyll a and dissolved color on water transparency measurements (e.g. higher chlorophyll a and dissolved color concentrations often correspond to shallower water transparencies).
Figure 12. Comparison of the annual Chocorua Lake, Site 1 South, lay monitor Secchi Disk transparency data that have been collected between 1982 and 2007. The box and whisker plot depicts the annual distribution of the Secchi Disk transparency data. The higher the Secchi Disk transparency the clearer the water. The gray shaded regions on the graph are representative of water transparency conditions considered typical of an unproductive (clear), a moderately productive (light gray shading) and a highly productive (dark gray shading) lake.

Figure 13. Comparison of the annual Chocorua Lake, Site 1 South, lay monitor chlorophyll a data that have been collected between 1982 and 2007. The box and whisker plot depicts the annual distribution of the Secchi Disk transparency data. The higher the chlorophyll a concentration the greener the water (i.e. more algal growth). The gray shaded region on the graph is representative of conditions considered typical of a moderately productive lake while the clear region of the graph represents the range considered typical of an unproductive lake.

Note: Refer to appendix B for detailed description of how to interpret the box and whisker plots.
Figure 14. Comparison of the annual Chocorua Lake, Site 1 South, lay monitor total phosphorus data that have been collected between 1999 and 2007. The box and whisker plot depicts the annual distribution of the total phosphorus data. The higher the total phosphorus concentration the more nutrient enriched the lake. The gray shaded region on the graph is representative of total phosphorus concentrations considered sufficient to stimulate an algal bloom.

Note: Refer to appendix B for detailed description of how to interpret the box and whisker plots.
Chocorua Lake - Site 1 South
Annual Total Phosphorus Comparisons
Box and Whisker Plots: 1999-2007
APPENDIX A

Lakes Lay Monitoring Program, U.N.H.
[Lay Monitor Data]

Chocorua Lake, Tamworth New Hampshire
-- subset of trophic indicators, Site 1 South, 2007

Average transparency: 5.5 (2007: 9 values; 4.7 - 6.3 range)
Average chlorophyll: 1.3 (2007: 9 values; 0.9 - 2.8 range)
Average color: 17.2 (2007: 9 values; 12.9 - 25.8 range)
Total phosphorus (ug/L) 3.2 (2007: 9 values; 3.0 - 4.2 range)
Average alkalinity (gray): 3.7 (2007: 9 values; 2.2 - 4.2 range)
Average alkalinity (pink): 3.7 (2007: 9 values; 2.2 - 4.2 range)
Specific conductivity (uS/cm) 30.7 (2007: 5 Values; 29.4 - 33.6 range)

<table>
<thead>
<tr>
<th>Date</th>
<th>Secchi Disk Depth (meters)</th>
<th>Chl a (ug/L)</th>
<th>Dissolved Color (CPU)</th>
<th>Total Phos. (ug/L)</th>
<th>Alkalinity gray end pt. @ pH 5.1 (mg/L)</th>
<th>Alkalinity pink end pt. @ pH 4.6 (mg/L)</th>
<th>pH (std units)</th>
<th>Specific Conductivity @ 25°C (uS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/23/2007</td>
<td>6.3</td>
<td>1.3</td>
<td>25.8</td>
<td>3.1</td>
<td>2.0</td>
<td>2.2</td>
<td>6.6</td>
<td>-----</td>
</tr>
<tr>
<td>6/24/2007</td>
<td>5.3</td>
<td>1.8</td>
<td>20.6</td>
<td>3.1</td>
<td>2.8</td>
<td>3.0</td>
<td>-----</td>
<td>29.4</td>
</tr>
<tr>
<td>6/28/2007</td>
<td>5.8</td>
<td>1.0</td>
<td>19.8</td>
<td>3.2</td>
<td>2.9</td>
<td>3.2</td>
<td>6.9</td>
<td>29.9</td>
</tr>
<tr>
<td>7/7/2007</td>
<td>6.3</td>
<td>0.9</td>
<td>17.2</td>
<td>3.9</td>
<td>3.0</td>
<td>3.3</td>
<td>6.9</td>
<td>30.7</td>
</tr>
<tr>
<td>7/21/2007</td>
<td>5.1</td>
<td>2.8</td>
<td>15.5</td>
<td>3.2</td>
<td>3.5</td>
<td>3.7</td>
<td>6.9</td>
<td>32.2</td>
</tr>
<tr>
<td>8/7/2007</td>
<td>5.5</td>
<td>1.2</td>
<td>15.5</td>
<td>3.4</td>
<td>3.8</td>
<td>4.1</td>
<td>6.9</td>
<td>-----</td>
</tr>
<tr>
<td>8/15/2007</td>
<td>4.7</td>
<td>0.9</td>
<td>23.2</td>
<td>4.2</td>
<td>3.7</td>
<td>3.9</td>
<td>7.1</td>
<td>-----</td>
</tr>
<tr>
<td>9/2/2007</td>
<td>5.6</td>
<td>1.3</td>
<td>12.9</td>
<td>3.0</td>
<td>3.9</td>
<td>4.0</td>
<td>6.8</td>
<td>-----</td>
</tr>
<tr>
<td>10/4/2007</td>
<td>5.3</td>
<td>1.7</td>
<td>12.9</td>
<td>3.3</td>
<td>3.9</td>
<td>4.2</td>
<td>7.1</td>
<td>33.6</td>
</tr>
</tbody>
</table>

<< End of 2007 data listing; 9 records >>
APPENDIX B

DETERMINING WATER QUALITY CHANGES AND TRENDS

Box and Whisker Plots

Quick Overview:

The 2007 summary New Hampshire Lakes Lay Monitoring Program (NH LLMP) reports include box-and-whisker plots that provide a visual representation of how the data are spread out and how much variation exists. Thus, the box-and-whisker plots provide a summary of how your data are distributed and provide a visual summary of how the data have varied among years and, when multiple sampling locations are monitored, provide a summary of how the data vary among sampling sites.

Basically, these plots show how the data group together for a given year. The line in the “box” represents the sample median, the extent of the “box” represents a statistical range for comparison to another year, the “whiskers” show the boundaries of what could be considered the representative range of all the samples, and any points above or below the whiskers show atypical readings or “outliers” that represent an extreme condition or difference from that year’s data range. An algae bloom event may cause this type of outlier to occur in the chlorophyll data (high point) or Secchi disk clarity (low point).

We recommend that each NH LLMP participating group plan on collecting weekly or biweekly measurements throughout the sampling season to ensure that enough data are available for this type of statistical analysis. We suggest that at least 8 data collections per year occur and generally set 10 measurements per year as a sampling effort goal per site.

We can employ the appropriate statistical techniques for detecting the extent that change is occurring when the sampling effort recommendations are followed. Your report summary should include box and whisker plots as well as a basic interpretation for your lake. If you have additional questions on interpreting your results feel free to call the Educational Program Coordinator (Bob Craycraft) at 603-862-3696.

The Details:

In the sections below we further describe the use of the box and whisker plot for those that are interested on how they are determined and how they are interpreted:

The box-and-whisker plot is good at showing the extreme values and the range of middle values of your data (Figure 1). The box depicts the middle values of a variable, while the whiskers stretch to demonstrate the values between which 80% of the data points will fall. The filled circles then reflect the “outlier” data points that fall outside of the whiskers and reflect values that are atypically high or atypically low relative to the other data measured for a given year.
The box-and-whisker plots can be summarized as a graphic that displays the following important features of the data when they are arranged in order from least to greatest:

- **Median (50th percentile)** – the middle of the data
- **Lower Quartile (25th percentile)** – the point below which 25% of the data points are located.
- **Upper Quartile (75th percentile)** – the point below which 75% of the data points are located.
- **90th Percentile** – the point below which 90% of the data points are located.
- **10th Percentile** – the point below which 10% of the data points are located.
- **Outlier Data points** – data points that represent the upper 10% or the lowest 10% of the data collected for a specific year.

Note: A minimum number of data points is required to compute each feature documented above. At least three points are required to compute the Lower and the Upper Quartiles, five points are needed to compute the 10th percentile, and six points are needed to compute the 90th percentile. In the event that insufficient data points have been collected features will not be graphed due to the inability to reliably calculate the respective attribute.
Sample box-and-whisker plot interpretation:
A sample box-and-whisker plot is depicted in Figure 2 and it provides an opportunity to assess the usefulness of this type of plot at interpreting water quality monitoring data. The imaginary data depicted in Figure 2 reflect the annual water transparency measurements between the years 2001 and 2004. As you can glean from Figure 2, the distribution of the water clarity measurements have shifted to less clear conditions between 2001 and 2004. The median values, as well as the upper and lower quartiles (what is represented by the gray shaded box) have gradually shifted to less clear conditions over the four year span. The data points that lie between the upper and lower quartiles reflect 50% of the data collected for a given year and can provide insight into whether or not the water quality data are varying significantly between or among years. In extreme cases, when the gray shaded regions do not overlap between successive years or among years, one can quickly determine that the data distribution is significantly different for those years where the middle data (gray shading) does not overlap. Such differences can reflect long-term trends or can be a reflection of extreme climatic conditions for a given year such as atypically wet or atypically dry conditions that can have a profound impact on water quality.

Additional evaluation of the data can include a review of the 10th and the 90th percentiles (the whiskers) that provide additional insight into the distribution of the data. In this case, the trends exhibited by the 10th and the 90th percentiles are following the pattern of decreasing Secchi Disk Transparency as is exhibited by boxes (gray shaded regions). Outlier data points that fall outside of the “whiskers” can also be insightful. Such extreme values can be an early indicator of coming trends or can be an early warning sign of potential water quality problems. For instance, when Secchi Disk transparency measurements occasionally become significantly reduced (i.e. shallower water) such phenomenon can be an indication of short-term water quality problems such as excessive sediment or an algal bloom. If such problems are not contended with, but are instead left unattended, the longer-
term impact could result in an increase in the magnitude and frequency of the water transparency reductions that, in turn, would result in a decreasing trend as evidenced by a shift of the "Boxes" to shallower water transparencies. There might also be occasions when the Secchi Disk transparency outliers reflect atypically clear water clarity. Such outliers can be a sign that conditions are improving or, as is often the case, the water quality is responding to short-term climatic variations that can have a profound impact on the water quality data. For instance, the outlier data point of 6.4 meters that was documented in 2004 (Figure 2) is counter intuitive to the long term trend of decreasing water quality. Plausible explanations for such an anomaly could be due to short term overgrazing of algae by zooplankton (typical for moderate to highly productive lakes), an abrupt shift in climate that might have favored clearer water (cloudy days or cooler water) or perhaps there was some sort of human intervention, such as a fish stocking or lake treatment that would have resulted in clearer water claries.

Your 2007 non-technical summary in this report includes a basic interpretation of the box-and-whisker plots that are specific to your lake. However, since you have personal knowledge of the conditions of your lake and local events that might influence the water quality measurements, you might have additional insight into the cause of the water quality fluctuations that have not been discussed in the report. Should you want to discuss the water quality results further, or provide additional information that you feel is important, please contact Bob Craycraft by phone, (603) 862-3696, or by email, bob.craycraft@unh.edu. Since the box-and-whisker plots are a relatively new addition to the annual water quality reports we would appreciate your feedback regarding these graphs and whether you feel the box-and-whisker plots are appropriate for our volunteer monitoring audience.
GLOSSARY OF LIMNOLOGICAL TERMS

Aerobe- Organisms requiring oxygen for life. All animals, most algae and some bacteria require oxygen for respiration.

Algae- See phytoplankton.

Alkalinity- Total concentration of bicarbonate and hydroxide ions (in most lakes).

Anaerobe- Organisms not requiring oxygen for life. Some algae and many bacteria are able to respire or ferment without using oxygen.

Anoxic- A system lacking oxygen, therefore incapable of supporting the most common kind of biological respiration, or of supporting oxygen-demanding chemical reactions. The deeper waters of a lake may become anoxic if there are many organisms depleting oxygen via respiration, and there is little or no replenishment of oxygen from photosynthesis or from the atmosphere.

Benthic- Referring to the bottom sediments.

Bacterioplankton- Bacteria adapted to the "open water" or "planktonic" zone of lakes, adapted for many specialized habitats and include groups that can use the sun's energy (phytoplankton), some that can use the energy locked in sulfur or iron, and others that gain energy by decomposing dead material.

Bicarbonate- The most important ion (chemical) involved in the buffering system of New Hampshire lakes.

Buffering- The capacity of lakewater to absorb acid with a minimal change in the pH. In New Hampshire the chemical responsible for buffering is the bicarbonate ion. (See pH.)

Chloride- One of the components of salts dissolved in lakewater. Generally the most abundant ion in New Hampshire lakewater, it may be used as an indicator of raw sewage or of road salt.

Chlorophyll a- The main green pigment in plants. The concentration of chlorophyll a in lakewater is often used as an indicator of algal abundance.

Circulation- The period during spring and fall when the combination of low water temperature and wind cause the water column to mix freely over its entire depth.

Density- The weight per volume of a substance. The more dense an object, the heavier it feels. Low-density liquids will float on higher-density liquids.
Dimictic - The thermal pattern of lakes where the lake circulates, or mixes, twice a year. Other patterns such as polymictic (many periods of circulation per year) are uncommon in New Hampshire. (See also meromictic and holomictic).

Dystrophy - The lake trophic state in which the lakewater is highly stained with humic acids (reddish brown or yellow stain) and has low productivity. Chlorophyll a concentration may be low or high.

Epilimnion - The uppermost layer of water during periods of thermal stratification. (See lake diagram).

Eutrophy - The lake trophic state in which algal production is high. Associated with eutrophy is low Secchi Disk depth, high chlorophyll a, and high total phosphorus. From an aesthetic viewpoint these lakes are "bad" because water clarity is low, aquatic plants are often found in abundance, and cold-water fish such as trout and salmon are usually not present. A good aspect of eutrophic lakes is their high productivity in terms of warm-water fish such as bass, pickerel, and perch.

Free CO2 - Carbon dioxide that is not combined chemically with lake water or any other substances. It is produced by respiration, and is used by plants and bacteria for photosynthesis.

Holomixis - The condition where the entire lake is free to circulate during periods of overturn. (See meromixis.)

Humic Acids - Dissolved organic compounds released from decomposition of plant leaves and stems. Humic acids are red, brown, or yellow in color and are present in nearly all lakes in New Hampshire. Humic acids are consumed only by fungi, and thus are relatively resistant to biological decomposition.

Hydrogen Ion - The "acid" ion, present in small amounts even in distilled water, but contributed to rain-water by atmospheric processes, to ground-water by soils, and to lakewater by biological organisms and sediments. The active component of "acid rain". See also "pH" the symbolic value inversely and exponentially related to the hydrogen ion.

Hypolimnion - The deepest layer of lakewater during periods of thermal stratification. (See lake diagram)

Lake - Any "inland" body of relatively "standing" water. Includes many synonyms such as ponds, tarns, loches, billabongs, bogs, marshes, etc.

Lake Morphology - The shape and size of a lake and its basin.

Littoral - The area of a lake shallow enough for submerged aquatic plants to grow.

Meromixis - The condition where the entire lake fails to circulate to its deepest points; caused by a high concentration of salt in the deeper waters, and by peculiar landscapes (small deep lakes surrounded by hills and/or forests. (Contrast holomixis.)
Mesotrophy—The lake trophic state intermediate between oligotrophy and eutroph. Algal production is moderate, and chlorophyll a, Secchi Disk depth, and total phosphorus are also moderate. These lakes are esthetically "fair" but not as good as oligotrophic lakes.

Metalimnion—The "middle" layer of the lake during periods of summer thermal stratification. Usually defined as the region where the water temperature changes at least one degree per meter depth. Also called the thermocline.

Mixis—Periods of lakewater mixing or circulation.

Mixotrophy—The lake condition where the water is highly stained with humic acids, but algal production and chlorophyll a values are also high.

Oligotrophy—The lake trophic state where algal production is low, Secchi Disk depth is deep, and chlorophyll a and total phosphorus are low. Esthetically these lakes are the "best" because they are clear and have a minimum of algae and aquatic plants. Deep oligotrophic lakes can usually support cold-water fish such as lake trout and land-locked salmon.

Overturn—See circulation or mixis

pH—A measure of the hydrogen ion concentration of a liquid. For every decrease of 1 pH unit, the hydrogen ion concentration increases 10 times. Symbolically, the pH value is the "negative logarithm" of the hydrogen ion concentration. For example, a pH of 5 represents a hydrogen ion concentration of 10^{-5} molar. [Please thank the chemists for this lovely symbolism -- and ask them to explain it in lay terms!] In any event, the higher the pH value, the lower the hydrogen ion concentration. The range is 0 to 14, with 7 being neutral 1 denoting high acid condition and 14 denoting very basic condition.

Photosynthesis—The process by which plants convert the inorganic substances carbon dioxide and water into organic glucose (sugar) and oxygen using sunlight as the energy source. Glucose is an energy source for growth, reproduction, and maintenance of almost all life forms.

Phytoplankton—Microscopic algae which are suspended in the "open water" zone of lakes and ponds. A major source of food for zooplankton. Common examples include: diatoms, euglenoids, dinoflagellates, and many others. Usually included are the blue-green bacteria.

Parts per million—Also known as "ppm". This is a method of expressing the amount of one substance (solute) dissolved in another (solvent). For example, a solution with 10 ppm of oxygen has 10 pounds of oxygen for every 999,990 pounds (500 tons) of water. Domestic sewage usually contains from 2 to 10 ppm phosphorus.

Parts per billion—Also known as "ppb". This is only 1/1000 of ppm, therefore much less concentrated. As little as 1 ppb of phosphorus will sustain growth of algae. As little as 10 ppb phosphorus will cause algal blooms! Think of the ratio as 1 milligram (1/28000 of an ounce) of phosphorus in 25 barrels of water (55 gallon drums)! Or, 1 gallon of septic waste diluted into 10,000 gallons of lakewater. It adds up fast!
Plankton- Community of microorganisms that live suspended in the water column, not attached to the bottom sediments or aquatic plants. See also "bacterioplankton" (bacteria), "phytoplankton" (algae) and "zooplankton" (microcrustaceans and rotifers).

Saturated- When a solute (such as water) has dissolved all of a substance that it can. For example, if you add table salt to water, a point is reached where any additional salt fails to dissolve. The water is then said to be saturated with table salt. In lakewater, gaseous oxygen can dissolve, but eventually the water becomes saturated with oxygen if exposed sufficiently long to the atmosphere or another source of oxygen.

Specific Conductivity- A measure of the amount of salt present in lakewater. As the salt concentration increases, so does the specific conductivity (electrical conductivity).

Stratum- A layer or "blanket". Can be used to refer to one of the major layers of lakewater such as the epilimnion, or to any layers of organisms or chemicals that may be present in a lake.

Thermal Stratification- The process by which layers are built up in the lake due to heating by the sun and partial mixing by wind.

Thermocline- Region of temperature change. (See metalimnion.)

Total Phosphorus- A measure of the concentration of phosphorus in lake-water. Includes both free forms (dissolved), and chemically combined form (as in living tissue, or in dead but suspended organisms).

Trophic Status- A classification system placing lakes into similar groups according to their amount of algal production. (See Oligotrophy, Mesotrophy, Eutrophy, Mixotrophy, and Dystrophy for definitions of the major categories)

Z- A symbol used by limnologists as an abbreviation for depth.

Zooplankton- Microscopic animals in the planktonic community. Some are called "water fleas", but most are known by their scientific names. Scientific names include: *Daphnia*, *Cyclops*, *Bosmina*, and *Kellicottia*.