SQUAM LAKE
1992
LAKES LAY MONITORING PROGRAM

by
Jeffrey A. Schloss
Robert K. Craycraft

edited by
A.L. Baker and J.F. Haney

NEW HAMPSHIRE LAKES LAY MONITORING PROGRAM

NH LLMP

FRESHWATER BIOLOGY GROUP
University of New Hampshire
Durham

UNIVERSITY OF NEW HAMPSHIRE
COOPERATIVE EXTENSION

To obtain more information about the NH Lakes Lay Monitoring Program (NH LLMP) contact the Coordinator (J.Schloss) at (603) 862-3848
Dr. Baker at 862-3845 or Dr. Haney at 862-2106
PREFACE

This report contains the findings of a water quality survey of the Squam Lakes, New Hampshire, conducted in the summer of 1992 by the Freshwater Biology Group (FBG) of the University of New Hampshire and the Squam Lakes Association (SLA).

The report is written with the concerned lake resident in mind and contains a brief, non-technical summary of 1992 results as well as more detailed "Introduction" and "Discussion" sections. Graphic display of data is included, in addition to listings of data in appendices, to aid visual perspective.
ACKNOWLEDGEMENTS

This was the fourteenth year of participation in the Lakes Lay Monitoring Program (LLMP) for the Squam Lake and Little Squam Lake Monitors. The Lay Monitors were Deborah and Austin Broadhurst, Chad Decker, Arthur and Patricia Greenfield, Jonathan and Robert Hendrick, John C. Hurd, Jody Murdough, Phil Preston, Bert Read, John S. Reever, Ken B. Ruhm and Lin Schwartz. The coordinator and liaison to the Freshwater Biology Group (FBG) was again Phil Preston. The FBG congratulates the Lay Monitors on the quality of their work, and the time and effort put forth. We encourage other interested members of the Squam Lakes Association to continue monitoring during the 1993 season. Funding for the monitoring was provided by the Squam Lakes Association.

The Freshwater Biology Group is a not-for-profit research program co-supervised by Dr. Alan Baker and Dr. James Haney and coordinated by Jeffrey Schloss. Members of the FBG summer field team included Jeffrey Schloss, Robert Craycraft, Gregg Vereb, Gregg Stevens, Sean Proll, Matt Denneen and Robert Banks. Other FBG staff assisting in the fall were: Eric Betke, Jessica Chappell, Amanda Fifield and Phil Lucason.

The FBG acknowledges the University of New Hampshire Cooperative Extension for funding and furnishing office, laboratory and storage space. The College of Life Sciences and Agriculture provided accounting support and the UNH Office of Computer Services provided computer time and data storage allocations.

Participating groups in the LLMP include: The New Hampshire Audubon Society, Derry Conservation Commission, Dublin Garden Club, Nashua Regional Planning Commission, Center Harbor Bay Conservation Commission, Governor's Island Club Inc., Little Island Pond Rod and Gun Club, Walker's Pond Conservation Society, United Associations of Alton, the Pemaquid Watershed Study Group, the associations of Baboosic Lake, Beaver Lake, Berry Bay, Big Island Pond, Bow Lake Camp Owners, Chesham Pond, Lake Chocorua, Crystal Lake, Cunningham Pond, Dublin Lake, Glines Island,
Goose Pond, Great East Lake, Lake Kanasatka Watershed, Langdon Cove, Long Island Landowners, Lovell Lake, Marchs Pond, Mascoma Lake, Mendum's Pond, Meredith Bay Rotary Club, Merrymeeting Lake, Milton Ponds Lake Lay Monitoring, Mirror Lake (Tuftonboro), Moultonbouro Bay, Lake Winnipesaukee, Naticook Lake, Newfound Lake, Nippo Lake, Pea Porridge Pond, Perkins Pond, Pleasant Lake, Silver Lake (Hollis), Silver Lake (Harrisville), Silver Lake (Madison), Silver Lake (Tilton), Squam Lakes, Lake Sunapee, Sunset Lake, Lake Waukewan, Lake Winona, Wentworth Lake and the towns of Alton, Amherst, Enfield, Hollis, Madison, Merrimack, Strafford and Wolfeboro.
SQUAM LAKES
1992 NON-TECHNICAL SUMMARY

Monitoring was undertaken at Squam Lake and Little Squam Lake by the volunteer monitors from June 20 to September 17. In-depth analysis of Squam and Little Squam Lakes were conducted on June 16, July 30 and again on August 25 by the FBG.

1) Water transparency at Squam and Little Squam Lakes was high, the sign of clear and unproductive waters. The secchi disk was visible as far down as 9.5 meters (30.9 feet) on Squam Lake and 8.4 meters (27.3 feet) on Little Squam Lake. 1992 transparency averages of Little Squam Lake were similar to the 1991 averages (i.e. the lake is as clear). Transparency averages of Squam Lake increased at many of the sampling stations which include sites 2 Cotton Cove, 5 Livermore Cove, 11 Kent Island, 12 Moultonboro Bay, 14 Sturtevant Bay and 16 Dog Cove. On the other hand, transparency averages at the Inner and Outer Squaw Coves as well as the Sandwich Bay sampling station decreased slightly. The 1992 transparency readings are characteristic of an unproductive New Hampshire Lake. However, new transparency lows of 4.7 meters and 3.8 meters were recorded at sites 2 Cotton Cove and 16 Dog Cove, respectively.

2) Seasonal average surface water (integrated) chlorophyll \(a\) concentrations increased at both deep sampling stations in Little Squam Lake and a new single date chlorophyll \(a\) high of 4.9 milligrams per cubic meter (4.9 mg m\(^{-3}\) equivalent to 4.9 parts chlorophyll per billion parts water) was set at the western sampling station. The average chlorophyll \(a\) concentrations in Squam Lake fluctuated considerably from site to site. Average chlorophyll \(a\) levels increased at the Cotton Cove, the Livermore Cove, the Sandwich Bay and the Dog Cove sampling stations but decreased at the Inner and Outer Squaw Cove, Sturtevant Bay and Kent Island sampling stations. Average chlorophyll \(a\) levels remained unchanged at the Moultonborough Bay sampling station. Unlike 1991, most sampling
stations exceeded the chlorophyll a concentration of 3 ppb at some point during the summer sampling season.

3) Dissolved lakewater color levels for Squam Lake and Little Squam Lake were low to moderate, 19.7 ptu (platinate color units), and less than the average of 26 ptu for LLMP program lakes. Small increases in water color from the natural breakdown of plant materials in and around a lake are not considered to be detrimental to water quality. However, increased color can lower water transparency, and hence, change the public perception of water quality. Large amounts of dissolved color may occur naturally but also occur during deforestation and development within the watershed. High color levels can actually mask the ability of the secchi disk transparency to predict chlorophyll levels.

4) Total phosphorus (nutrient) samples collected by the FBG in the surface waters of the deep sites and in the tributaries were low, with the exception of moderate levels (11.2 ppb) at Dog Cove in late July. The deeper waters displayed no great accumulation of phosphorous as the season progressed. All phosphorus samples were in the range of 0.9 ppb to 11.2 ppb and remained below the concentration of 15 ppb which is commonly thought of as the boundary between less productive and more productive lakes.

5) The pH of the surface waters of the lake, measured by the FBG and volunteer monitors, remains within the optimum range for most aquatic organisms. The alkalinity of the lake remained low, about 2 units lower than the average alkalinity of 6.3 units for LLMP program lakes. The pH and alkalinity data indicate that Squam and Little Squam Lakes seem to have a low, but sufficient, buffering capacity at this time to resist fluctuations in pH caused by acid loadings.
6) The specific conductivity of the deep sites on Squam and Little Squam Lakes was low. High conductivity values can indicate the presence of septic leachate or deicing salt runoff.

7) In-depth analysis at the deep sites disclosed the typical temperature stratification patterns for northern temperate lakes. With the depth of the upper mixed layer of water extending to 8.0 meters. Oxygen content of the bottom waters remained above 5 milligrams per liter (the minimum concentration required for the successful growth and reproduction of most coldwater fish) only down to about 16 meters in Squam Lake (Loon Reef) and 17 meters in Little Squam Lake (Site 1 West) by late July. The low oxygen levels suggest the accumulation of organic matter from algal and plant productivity as well as watershed run-off.

8) For all measurements considered and averaged for the season, both Squam and Little Squam Lakes would be classified as clear, unproductive (oligotrophic) lakes. However, chlorophyll levels in the Squaw Inner and Outer Coves continue to suggest more productive levels at the respective sites. In addition, chlorophyll levels in Little Squam (the east and west sampling stations) and in Squam Lake (2 Cotton Cove, 5 Livermore Cove and 16 Dog Cove) are slowly approaching the level of 3 mg m$^{-3}$, considered the boundary between unproductive and moderately productive lakes (See figures 57-78).

9) Comparisons between lay monitor and FBG data indicate the volunteer monitors of Squam Lake and Little Squam Lake are doing an excellent Job of measuring water quality at all stations. Alkalinity readings collected by the FBG are slightly lower than those collected by the volunteer monitors.
COMMENTS AND RECOMMENDATIONS

1) We recommend that each association, including the Squam Lakes Association continue to develop its data base on lake water quality through continuation of the long term monitoring program. The data base will provide information on the short and long-term cyclic variability that occurs in the lake and eventually will enable more reliable predictions of water quality trends.

2) We suggest the collection of secchi disk readings at the Loon Reef sampling station. Readings taken by the volunteer monitors would supplement data collected by the FBG during it's visits to Squam Lake and enable more reliable predictions of water quality trends at the site. We also invite the volunteers to collect chlorophyll samples at the site. While secchi disk readings provide valuable information on fluctuations in water clarity, additional parameters (chlorophyll, dissolved color) are needed to determine the cause. If funding is a concern, we suggest collecting one chlorophyll sample each month, for which there is no charge.

3) We suggest phosphorous testing of the lake early in the season, as New Hampshire lakes receive the majority of nutrient loading at this time, during times of heavy lake use (i.e. July 4, Labor Day) and again late in the season when septic systems have been put through a full seasons use. Both in lake and tributary samples should be included. With the heavy snow this winter, we expect substantial spring run-off and hope you can muster up a brave soul or two to collect stream and lake nutrient samples and take alkalinity readings at this critical time. If you are interested in spring sampling but have no one to collect samples, please call us and we will try to make arrangements for one of our field members to collect the samples for you.
INTRODUCTION

The New Hampshire Lakes Lay Monitoring Program

In this fifteenth year of operation, the NH Lakes Lay Monitoring Program has grown from a university class project on Chocorua Lake and pilot study on the Squam Lakes to a comprehensive state-wide program with over 500 volunteer monitors and more than 100 lakes participating. Originally developed to establish a data-base for determining long-term trends of lake water quality for science and management, the program has expanded by taking advantage of the many resources that citizen monitors can provide. The NH LLMP has an international reputation as a successful cooperative monitoring, education and research program. Current projects include: use of volunteer generated data for non-point pollution studies using high tech analysis system (Geographic Information Systems and Satellite Remote Sensing), intensive watershed monitoring for the development of lake nutrient budgets, and investigations of water quality and indicator organisms (food web analysis, fish condition, and stream invertebrates). The key ingredients responsible for the success of the program include innovative funding and cost reduction, assurance of credible data, practical sampling protocols and, most importantly, the interest and motivation of our volunteer monitors.

The 1992 sampling season was another exciting year for the New Hampshire Lakes Lay Monitoring Program. National recognition for the high quality of work by you, the volunteer monitors, continued with awards, requests for program information and invitations to speak at national conferences. We continue to be listed as a model citizen monitoring program on the Environmental Success Index of Renew America and on the Environmental Network Clearinghouse. To date, the approach and methods of the NH LLMP have been adopted by new or existing programs in fifteen states and nine countries!
Our Fish Condition Program intensive lake survey results have been tabulated, reports went to NH Fish & Game (our sponsor) and the results for individual lakes are forthcoming. Our fish study team is now focusing on the Newfound Lake fishery to determine the effects and results of alewife introduction.

In 1992 volunteers performed over 3000 measurements on lakes across the state as well as provided over 2000 samples that were analyzed in our UNH Freshwater Biology Group analytical lab. To date, data has been collected on over 100 lakes at over 440 sites by almost 600 volunteers who made over 10,492 lake sampling trips!

The General Scenario—1992

Low snow pack (less water melting through the watershed at springtime) was again a factor in reduced spring runoff although we did see a handful of spring shower events early in the season. While mid and late summer conditions were more cloudy than typical, rainfall was again light. Thus, while not as dry as the summer of 1991, the 1992 summer season had below average precipitation. The general result of this was continued optimum water quality conditions for most lakes.

Lakes were clearer due to a combination of factors that could include lower dissolved color washed in from surrounding wetland areas, lower algae growth (measured as chlorophyll a) in the surface waters and lower suspended sediment levels. Dissolved color is not indicative of a water quality problems (although large increases in dissolved color sometime follow large land clearing operations) but in some of our more pristine program lakes it nevertheless has a large effect on water clarity changes.

With decreased nutrient runoff in the spring, and a lower water table situation translating into less of a chance of septic system failure, algae and some aquatic plant growth would be minimized.
As with color and nutrients the dryer season brought less suspended sediment load to many of our streams and lakes. If increased clarity was not the result of decreased color or chlorophyll levels then it was due to decreased suspended sediment by default. To find out how these water quality indicators inter-relate for a particular lake site compare the secchi disk, chlorophyll and color graphs enclosed in this report. Note whether changes in clarity (secchi disk depth) correspond to chlorophyll or color concentration changes or whether it is a combination of both. If neither seem to exhibit a consistent effect then sediment plays an important role in your lake's clarity.

A few NH LLMP lakes were actually worse off in 1992. These lakes included those more productive lakes in which a good deal of nutrients come internally from sediment release. Lakes with significant nutrient input from septic systems or shoreline fertilization and watering would also have a bad year under the 1992 conditions. Other lakes that fared worse this year were seepage lakes, shallow lakes that rely on groundwater (springs) in-flow and out-flow for replenishment and cleansing. With a low water table, these lakes became great "growth chambers" for algae.

Importance of Long-term Monitoring

A major goal of a monitoring program is to identify any short or long-term changes in the water quality of the lake. Of major concern is the detection of cultural eutrophication: increases in the productivity of the lake, the amount of algae and plant growth, due to the addition of nutrients from human activities. Changes in the natural buffering capacity of the lakes in the program is also a topic of great concern, as New Hampshire receives large amounts of acid precipitation, yet most of our lakes contain little mineral content to neutralize this type of pollution.

For almost a decade and a half, data collected weekly from lakes participating in the New Hampshire Lakes Lay Monitoring Program have indicated there is quite a
variation in water quality indicators through the open water season on the majority of lakes. Short-term differences may be due to variations in weather, lake use, or other chance events. Monthly sampling of a lake during a single summer provides some useful information, but there is a greater chance that important short-term events such as algal blooms or the lake response to storm run-off will be missed. These short-term fluctuations may be unrelated to the actual long-term trend of a lake or they may be indicative of the changing status or "health" of a lake.

To determine if a change in water quality is occurring, a lake must be sampled on a frequent basis over a substantial amount of time. A poorly designed sampling program may even mislead the investigator away from the actual trend: Consider the hypothetical lake in Figure 1. Sampling only once a year during August from 1982 to 1986 would produce a plot (Fig. 2) suggesting a decrease in eutrophication. The actual long-term trend of the lake, increasing eutrophy, can only be clearly discerned by sampling additional times a year for a ten year period (Fig. 1). Frequent monitoring carried out over the course of many summers can provide the information required to distinguish between short-term fluctuation ("noise") and long-term trends ("signal"). To that end, the lake must establish a long-term data base.

The number of seasons it takes to distinguish between the noise and the signal is not the same for each lake. Evaluation and interpretation of a long-term data base will indicate that the water quality of the lake has worsened, improved, or remained the same. In addition, different areas of a lake may show a different response. As more data is collected, prediction of current and future trends can be made. No matter what the outcome, this information is essential for the intelligent management of the lake.

There are also short-term uses for lay monitoring data. The examination of different stations in a lake can disclose the location of specific problems and corrective action can be
initiated to handle the situation before it becomes more serious. On a lighter note, some associations post their weekly data for use in determining the best depths for finding fish!

It takes a considerable amount of effort as well as a deep concern for one's lake to be a lay monitor in the NH Lakes Lay Monitoring Program. Many times a monitor has to brave inclement weather or heavy boat traffic to collect samples. Sometimes it even may seem that one week's data is just the same as the next. Yet every sampling provides important information on the variability of the lake.

We are pleased with the interest and commitment of our lay monitors and are proud that their work is what makes the NH LLMP the most extensive, and we believe, the best volunteer program of its kind.

Purpose and Scope of This Study

This was the fourteenth year that monitoring of Squam and Little Squam Lakes was undertaken by the Freshwater Biology Group and the Squam Lakes Association. The program of sampling was designed to continue adding data to the long-term data base established. Sampling emphasis was placed on eleven open water deep and shallow stations located on Squam and Little Squam Lakes. A more in-depth study of the deep lake sites was undertaken by the FBG on June 16, July 30 and Again on August 25. Tributary sampling was also undertaken during the FBG team visits.

The primary purpose of this report is to discuss results of the 1992 monitoring with emphasis on current conditions of Squam and Little Squam Lakes including the extent of eutrophication and the lake's susceptibility to increasing acid precipitation. This information is part of a large data base of historical and more recent data compiled and entered onto computer files for New Hampshire lakes that include New Hampshire Fish and Game surveys of the 1930's, the surveys by the New Hampshire Water Supply and Pollution Control Commission and the FBG surveys. Care must be taken when comparing
current results with early studies. Many complications arise due to methodological
differences of the various testing facilities and technological improvements in testing.
DISCUSSION OF LAKE MONITORING MEASUREMENTS

The section below details the important concepts involved for the various testing procedures used in the New Hampshire Lakes Lay Monitoring Program. Where appropriate, summary statistics of 1992 results from all participating lakes are included. Certain tests or sampling performed at the time of the optional Freshwater Biology Group field trip are indicated by an asterisk (*).

Thermal Stratification in the Deep Water Sites

Lakes in New Hampshire display distinct patterns of temperature stratification, that develop as the summer months progress, where a layer of warmer water (the epilimnion) overlies a deeper layer of cold water (hypolimnion). The layer that separates the two regions characterized by a sharp drop in temperature with depth is called the thermocline or metalimnion. Some shallow lakes may be continually mixed by wind action and will never stratify. Other lakes may only contain a developed epilimnion and metalimnion.

Squam and Little Squam Lakes became stratified into three distinct layers, discussed above, as the season progressed.

Water Transparency

Secchi Disk depth is a measure of the water transparency. The deeper the depth of secchi disk disappearance, the more transparent the lake water; light penetrates deeper if there is little dissolved and/or particulate matter (which includes both living and non-living particles) to absorb and scatter it.

In the shallow areas of many lakes, the secchi disk will hit bottom before it is able to disappear from view (what is referred to as a "Bottom Out" condition). Thus, Secchi disk measurements are generally taken over the deepest sites of a lake. Transparency values of greater than 4 meters are typical of clear, less productive lakes. Values less than 2.5
meters are generally an indication of a very productive lake. In 1992 the average transparency for lakes participating in the NH LLMP was 5.6 meters with a range of 1.8 to 12.5 meters.

Average secchi disk transparency of Squam and Little Squam Lakes remained high through most of the 1992 sampling season. The lowest transparency averages were recorded in the Inner and Outer Squaw Cove sampling stations which is consistent with historical data. The Inner and Outer Squaw Cove sampling stations exhibited higher chlorophyll a and dissolved color levels which contributed to the low clarity readings at the sites. Although the water clarity remains high in Squam and Little Squam Lakes, there has been a trend of decreasing water clarity in recent years for several of the lake sampling stations which includes the Little Squam Lake sampling stations (1 West and 1B) as well as the Cotton Cove and Livermore Cove sampling stations on Squam Lake (see figures 57-78).

Chlorophyll a

The chlorophyll a concentration is a measurement of the standing crop of phytoplankton and is often used to classify lakes into categories of productivity called trophic states. **Eutrophic** lakes are highly productive with large concentrations of algae and aquatic plants due to nutrient enrichment. Characteristics include accumulated organic matter in the lake basin and lower dissolved oxygen in the bottom waters. Summer chlorophyll a concentrations average above 7 mg m\(^{-3}\) (7 milligrams per cubic meter; 7 parts per billion). **Oligotrophic** lakes have low productivity and low nutrient levels and average summer chlorophyll a concentrations are generally less than 3 mg m\(^{-3}\). These lakes generally have cleaner bottoms and high dissolved oxygen levels throughout. **Mesotrophic** lakes are intermediate in productivity with concentrations of chlorophyll a
generally between 3 mg m\(^{-3}\) and 7 mg m\(^{-3}\). In 1992 the average chlorophyll for lakes participating in the NH LLMP was 2.8 mg m\(^{-3}\) with a range of 0.4 to 18.5 mg m\(^{-3}\).

Average chlorophyll \(a\) concentrations remained low in 1992, with the exception of the Inner and Outer Squaw Coves which maintained moderate concentrations. However, most sites exhibited an algal "bloom" during the 1992 sampling season, at which time the chlorophyll \(a\) concentration exceeded 3 mg m\(^{-3}\). Although the average yearly chlorophyll \(a\) concentrations remain below the level of 3 mg m\(^{-3}\), commonly thought of as the boundary between unproductive and moderately productive lakes, in all but the Squaw Cove sampling stations, yearly comparisons of average chlorophyll \(a\) concentrations indicate a trend of increasing algal productivity at several of the Squam and Little Squam sampling stations. Chlorophyll \(a\) levels at sites 1 West and 1B of Little Squam Lake as well as Livermore Cove and Dog Cove of Squam Lake have demonstrated increasing chlorophyll \(a\) levels for nearly 10 years. On the other hand, the chlorophyll \(a\) concentration in Sturtevant Bay have decreased over the same time span. The trends are not as clear at Sandwich Bay, Kent Island or Moultonboro Bay. However, chlorophyll \(a\) levels from the past three years (1990-1992) exceed historical levels at the latter sites.

Testing is sometimes done to check for metalimnetic algal populations, algae that layer out at the thermocline and generally go undetected if only epilimnetic (point or integrated) sampling is undertaken. Chlorophyll concentrations of a water sample collected in the thermocline is compared to the integrated epilimnetic sample. Greater chlorophyll levels of the point sample, in conjunction with microscopic examination of the samples (see Phytoplankton section below) confirm the presence of such a population of algae. These populations should be monitored as they may be an indication of increased nutrient loading into the lake.

FBG samples collected on August 25 revealed the presence of such a population in Little Squam Lake. Mid-lake algal populations were nearly two times higher than the
surface levels (2.8 mg m\(^{-3}\) compared to 4.4 mg m\(^{-3}\)) at site 1 West. Higher mid-lake algal populations were also present at the Squam Lake sampling stations: Loon Reef and Deep Haven. The mid-lake algal population was more than three times higher than the surface level (1.4 mg m\(^{-3}\) compared to 4.6 mg m\(^{-3}\)) at the Loon Reef sampling station and nearly five times higher at the Deep Haven sampling station (2.2 mg m\(^{-3}\) compared to 10.1 mg m\(^{-3}\)). Continued monitoring of these populations is recommended as they may be an indication of increased nutrient loading.

Dissolved Color

The dissolved color of lakes is generally due to dissolved organic matter from humic substances, which are naturally-occurring polyphenolic compounds leached from decayed vegetation. Highly colored or "stained" lakes have a "tea" color. Such substances generally do not threaten water quality except as they diminish sunlight penetration into deep waters. Increases in dissolved watercolor can be an indication of increased development within the watershed as many land clearing activities (construction, deforestation, and the resulting increased run-off) add additional organic material to lakes. Natural fluctuations of dissolved color occur when storm events increase drainage from wetlands areas within the watershed. As suspended sediment is a difficult and expensive test to undertake, both dissolved color and chlorophyll information is important when interpreting the secchi disk transparency.

Dissolved color is measured on a comparative scale that uses standard chloroplatinate dyes and is designated as a color unit or ptu. Lakes with color below 10 ptu are very clear, 10 to 20 ptu are slightly colored, 20 to 40 ptu are lightly tea colored, 40 to 80 ptu are tea colored and greater than 80 ptu indicates highly colored waters. Generally the majority of New Hampshire lakes have color between 20 to 30 ptu.
Total Phosphorus

Of the two "nutrients" most important to the growth of aquatic plants, nitrogen and phosphorus, it is generally observed that phosphorus is the more limiting to plant growth, and therefore the more important to monitor and control. Phosphorus is generally present in lower concentrations, and its sources arise primarily through human related activity in a watershed. Nitrogen can be fixed from the atmosphere by many bloom-forming blue-green bacteria, and thus it is difficult to control. The total phosphorus includes all dissolved phosphorus as well as phosphorus contained in or adhered to suspended particulates such as sediment and plankton. As little as 15 parts per billion of phosphorus in a lake can cause an algal bloom.

Generally, in the more pristine lakes, phosphorus values are higher after spring melt when the lake receives the majority of runoff from its surrounding watershed. The nutrient is used by the algae and plants which in turn die and sink to the lake bottom causing phosphorus to decrease as the summer progresses. Lakes with nutrient loading from human activities and sources (Agriculture, Sediment Erosion, Septic Systems, etc) will show greater concentrations of nutrients as the summer progresses or after major storm events. Circulation of nutrients from the bottom waters of more productive lakes in late fall can result in algal blooms.

Phosphorus samples remained low in the surface waters when sampled by the FBG in June, July and August, with the single exception of Dog Cove, which reached a moderate level of 11.2 ppb late in July. The deeper waters also remained low, well below the concentration of 15 ppb which is commonly thought of as the boundary between more productive and less productive lakes.
pH

The pH is a way of expressing the acidic level of lakewater, and is generally measured with an electrical probe sensitive to hydrogen ion activity. The pH scale has a range of 1 (very acidic) to 14 (very "basic" or alkaline) and is logarithmic (ie: changes in 1 pH unit reflect a ten times difference in hydrogen ion concentration). Most aquatic organisms tolerate a limited range of pH and most fish species require a pH of 5.5 or higher for successful growth and reproduction.

Squam Lake pH levels ranged from 5.8 to 6.9 units when sampled by the FBG. The pH levels remain within the optimum range for most aquatic organisms.

Alkalinity

Alkalinity is a measure of the buffering capacity of the lake water. The higher the value the more acid that can be neutralized. Typically lakes in New Hampshire have low alkalinities due to the absence of carbonates and other natural buffering minerals in the bedrock and soils of lake watersheds.

Decreasing alkalinity over a period of a few years can have serious effects on the lake ecosystem. In a study on an experimental acidified lake in Canada by Schindler, gradual lowering of the pH from 6.8 to 5.0 in an 8-year period resulted in the disappearance of some aquatic species, an increase in nuisance species of algae and a decline in the condition and reproduction rate of fish. During the first year of Schindler's study the pH remained unchanged while the alkalinity declined to 20 percent of the pre-treatment value. The decline in alkalinity was sufficient to trigger the disappearance of zooplankton species, which in turn caused a decline in the "condition" of fish species that fed on the zooplankton.

The analysis of alkalinity employed by the Freshwater Biology Group includes use of a dilute titrant allowing an order of magnitude greater sensitivity and precision than the
standard method. Two endpoints are recorded during each analysis. The first endpoint (grey color of dye; pH endpoint of 5.1) approximates low level alkalinity values, while the second endpoint (pink dye color; pH endpoint of 4.6) approximates the alkalinity values recorded historically, such as NH Fish and Game data, with the methyl-orange endpoint method.

The average alkalinity of lakes throughout New Hampshire is low, approximately 9 mg per liter (calcium carbonate alkalinity), while the average alkalinity of the lakes studied by the Freshwater Biology Group in the NH LLMP is approximately 6.3 mg per liter. When alkalinity falls below 2 mg per liter the pH of waters can greatly fluctuate. Alkalinity levels are most critical in the spring when acid loadings from snowmelt and run-off are high, and many aquatic species are in their early, and most susceptible, stages of their life cycle.

Squam Lake alkalinity was low but within the range typical of New Hampshire Lakes. Although low, the alkalinity remains sufficient to prohibit wide variations in pH and buffer against acid precipitation.

Specific Conductivity *

The specific conductance of a water sample indicates concentrations of dissolved salts. Leaking septic systems and deicing salt runoff from highways can cause high conductivity values. Fertilizers and other pollutants can also increase the conductivity of the water. Conductivity is measured in micromhos (the opposite of the measurement of resistance ohms) per centimeter, more commonly referred to as micro-Siemans.

The Squam Lake and Little Squam Lake deep sites had low conductivity, as in previous years, which ranged from 25.3 to 46.3 micro-Siemans in 1992.
Dissolved Oxygen and Free Carbon Dioxide*

Oxygen is an essential component for the survival of aquatic life. Submergent plants and algae take in free carbon dioxide and create oxygen through photosynthesis by day. Respiration by both animals and plants uses up oxygen continually and creates carbon dioxide. Dissolved oxygen profiles determine the extent of declining oxygen concentrations in the lower waters. High carbon dioxide values are indicative of low oxygen conditions and accumulating organic matter. For both gases, as the temperature of the water decreases, more gas can be dissolved in the water.

The typical pattern of clear, unproductive lakes is a slight decline in hypolimnetic oxygen as the summer progresses. Oxygen in the lower waters is important for maintaining a fit, reproducing, cold water fishery. Trout and salmon generally require oxygen concentrations above 5 mg per liter (parts per million) in the cool deep waters. On the other hand, carp and catfish can survive very low oxygen conditions. Oxygen above the lake bottom is important in limiting the release of nutrients from the sediments and minimizing the collection of undecomposed organic matter.

Dissolved oxygen levels remained above 5 mg per liter only to about 16 meters in Squam Lake and to about 17 meters in Little Squam Lake on the August 25 sampling date. Low oxygen and high carbon dioxide levels suggest the accumulation of organic matter from watershed runoff and algal productivity.

Bacteria, fungi and other decomposers in the bottom waters break down organic matter originating from the watershed or generated by the lake. This process uses up oxygen and produces carbon dioxide. In lakes where organic matter accumulation is high, oxygen depletion can occur. In highly stratified eutrophic lakes the entire hypolimnion can remain unoxygenated or anaerobic until fall mixing occurs.

The oxygen peaks occurring at surface and mid-lake depths during the day are quite common in many lakes. These characteristic heterograde oxygen curves are the result of
the large amounts of oxygen, the by-product of photosynthesis, collecting in regions of high algal concentrations. If the peak occurs in the thermocline of the lake, metalimnetic algal populations (discussed above) may be present.

Little Squam Lake displayed such a peak on the June 15, the July 30 and the August 25 sampling dates (see figure 43). Such oxygen peaks were also present at the Loon Reef and Deep Haven sampling stations on July 30. Microscopic examination of mid-lake samples confirmed the presence of a stratifying layer of algae in both Squam Lake sampling stations.

Underwater Light

Underwater light available to photosynthetic organisms is measured with an underwater photometer which is much like the light meter of a camera (only waterproofed!). The photic zone of a lake is the volume of water capable of supporting photosynthesis. It is generally considered to be delineated by the water's surface and the level where light is reduced, by the absorption and scattering properties of the lake water, to one percent of the surface intensity. The one percent depth is sometimes termed the compensation depth. Knowledge of light penetration is important when considering lake productivity and in studies of submerged vegetation. Discontinuity (abrupt changes in the slope) of the profiles could be due to metalimnetic layering of algae or other particulates (discussed above). The underwater photometer allows the investigator to measure light at depths below the Secchi disk depth to supplement the transparency information.

Underwater light measurements taken on June 16 and August 25 by the FBG indicated the photic zone of Little Squam Lake extended to 13.2 meters and 10.6 meters, respectively. Light measurements were also collected on Squam Lake and indicated the photic zone of Loon Reef and Deep Haven extended to 12.0 meters and 13.7 meters, respectively.
Indicator Bacteria

Coliform bacteria in water indicate the possibility of fecal contamination. Although they are usually considered harmless to humans, they are much easier to test for than harmful pathogenic enteric bacteria (Salmonella, Shigella etc.) and viruses that may be present in fecal material. Total coliform includes all coliform bacteria which arise from the gut of animals or from vegetative materials. Fecal coliform are those specific organisms that inhabit the gut of warm blooded animals. Another indicator organism Fecal streptococcus (sometimes referred to as enterococcus) also can be monitored. The ratio of fecal coliform to fecal strep may be useful in suggesting the type of animal source responsible for the contamination. Desirable levels for a Class A water body is less than 50 total coliform organisms per 100 milliliters. If the coliform level rises above 150 organisms per 100ml swimming should be prohibited.

Ducks and geese are often a common cause of high concentrations of coliform at specific lake sites. While waterfowl are important components to the natural and aesthetic qualities of lakes that we all enjoy, it is poor management practice to encourage these birds by feeding them. The lake and surrounding area provides enough healthy and natural food for the birds and feeding them stale bread or crackers does nothing more than import additional nutrients into the lake and allows for increased plant growth. As birds also are a host to the parasite that causes "swimmers itch" waterfowl roosting areas offer a greater chance for infestation to occur. Thus while leaving offerings for our feathered friends is enticing, the results can prove to be detrimental to the lake system and to human health.

Phytoplankton

The planktonic community includes microbial organisms that represent diverse life forms, containing photosynthetic as well as non-photosynthetic types, and including bacteria, algae, crustaceans and insect larvae (the zooplankton are discussed below in a
separate section). Because planktonic algae or "phytoplankton" tend to undergo rapid seasonal cycles on a time scale of days and weeks, the levels of populations found should be considered to be most representative of the time of collection and not necessarily of other times during the ice-free season, especially the early spring and late fall periods.

The composition and concentration of phytoplankton can be indicative of the trophic status of a lake. Seasonal patterns do occur and must be considered. For example diatoms, tend to be most abundant in April-June and October-November, in the surface or epilimnetic layers of New Hampshire lakes. As the summer progresses, the dominant types might shift to green algae or golden algae. By late season Blue-green bacteria generally dominate. In nutrient rich lakes, nuisance green algae and/or bluegreen bacteria might dominate continually. After fall mixing diatoms might again be found to bloom.

Phytoplankton from integrated samples in 1992 were low in number (under 400 algae per milliliter) at the Little Squam Lake (1 West) and the Squam Lake (The Loon Reef and Deep Haven) sampling stations. The samples showed a high diversity which is generally considered indicative of healthy lake conditions. The dominant algal form through most of the season was the diatom, Cyclotella. However, the dominant algal form shifted to the bluegreen bacteria, Gloeothecce, late in the season.

Surface water chlorophyll a concentrations remained low during the 1992 sampling season. However, mid-lake chlorophyll a levels (see chlorophyll section) were almost five times higher in the thermocline than in the upper mixed layer on the August 25 sampling date at the Deep Haven sampling station. Microscopic examination of this mid-lake sample revealed a population of the larger golden algae, Synura, stratifying in the thermocline. A mid-lake population of Synura was also present at the Loon Reef sampling station in late August. These larger algae are the likely source of the elevated chlorophyll a levels in the thermocline late in the season. Continued monitoring of this phenomenon is suggested as
higher mid-lake chlorophyll a levels may be an indication of internal nutrient loading at this site.

Zooplankton

There are three groups of zooplankton that are generally prevalent in lakes: the protozoa, rotifers and crustaceans. Most research has been devoted to the last two groups although protozoa may be found in substantial amounts. Of the rotifers and the crustaceans, time and budgetary constraints usually make it necessary to sample only the larger zooplankton (macrozooplankton; larger than 80 or 150 microns; 1 million microns make up a meter). Thus, zooplankton analysis is generally restricted only to the larger crustaceans. Crustacean zooplankton are very sensitive to pollutants and are commonly used to indicate the presence of toxic substances in water. The crustaceans can be divided into two groups, the cladocerans (which include the "water fleas") and the copepods.

Macrozooplankton are an important component in the lake system. The filter feeding of the herbivorous ("grazing") species may control the population size of selected species of phytoplankton. The larger zooplankton can be an important food source for juvenile and adult planktivorous fish. All zooplankton play a part in the recycling of nutrients within the lake.

As discussed above for phytoplankton, zooplankton undergo seasonal population cycles and the results discussed below are most representative of the collection dates and not necessarily of other times during the ice-free season, especially during the early spring and late fall.

At the deep sites of Squam Lake a typical progression of zooplankton occurred with the herbivorous (algae eating) calanoid copepod *Diaptomus* dominating and a healthy diversity of cladocerans (water fleas) appearing including a high number of small types (*Bosmina* and *Holopedium*) in the June sample at Loon Reef. In July and August,
cladocerans diminished and the predatory (zooplankton eating) cyclopid copepods became dominant. While the relative numbers of each genus of zooplankton was very similar between the two deep sites, by August the Loon Reef site had about twice the animals of the Deep Haven site. This most likely corresponds to the greater productivity of the Loon Reef basin. Concentrations and diversity were typical of a healthy lake system.

In Little Squam Lake there was a different zooplankton community structure with the cladocerans as a group remaining a dominant component throughout the sampling season. The small "water flea" *Bosmina* dominated in the June sample. Cyclopid copepods always outnumbered the calanoid copepods and were the dominant animals in July and August. Diversity in Little Squam was also excellent and concentrations were initially high in June but were reduced throughout the remainder of the season.

In June, a sample was collected from the embayed Inner Squaw Cove site, a small basin that drains a very large area of forested and rural lands. The sample was very high in the caldoceran *Diaphanosoma* which is sometimes associated with more productive waters. This site is one of the more productive sites on Squam, thus the *Diaphanasoma* appear to be a good indicator species for lake production. In the coming year we will try to test other basins for this species occurrence.

Fish Condition

As with the plankton discussed above, the health of the fish species of a lake will be indicative of the overall water quality. Condition is determined by comparing the length of the fish to its weight. As would be expected, the heavier the fish for its length, the better its condition will be. By also examining a scale collected from the fish under a microscope, the approximate age and growth history can also be determined.
REFERENCES

REPORT FIGURES
Figure 1. The upper graph depicts weekly chlorophyll concentrations of a model lake measured weekly during ice-free conditions. The long-term trend is that of increased eutrophication (lake has become "greener"). Diamonds below the curve represent late summer (August) dates the data set was subsampled to create Figure 2.

Figure 2. The lower graph depicts late summer chlorophyll data of the model lake in Figure 1. Note how limited sampling over a five year period suggests a much different trend, that of decreasing eutrophy. Thus, limited sampling can mislead the investigator of long-term trends.
Figure 3. Location of Deep and Shallow Squam and Little Squam Lake sampling stations for the 1992 sampling season.
Figure 4. Little Squam Lake, 1992. Seasonal trends for Secchi Disk Depth (water transparency) of lay monitor Site 1 West. Solid lines on the plots border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 5. Little Squam Lake, 1992. Seasonal trends for chlorophyll *a* concentration of lay monitor Site 1 West. Chlorophyll *a* concentrations in parts per billion (ppb) of chlorophyll *a*.

Figure 6. Little Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 1 West. Color expressed as platinum-cobalt units (ptu).
Figure 7. Little Squam Lake, 1992. Seasonal trends for Secchi Disk Depth (water transparency) of lay monitor Site 1B. Solid lines on the plots border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 8. Little Squam Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 1B. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 9. Little Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 1B. Color expressed as platinum-cobalt units (ptu).
Figure 10. Squam Lake, 1992. Seasonal trends for Secchi Disk Depth (water transparency) of lay monitor Site 2 Cotton Cove. Solid lines on the plots border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 11. Squam Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 2 Cotton Cove. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 12. Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 2 Cotton Cove. Color expressed as platinum-cobalt units (ptu).
Figure 13. Squam Lake, 1992. Seasonal trends for Secchi Disk Depth (water transparency) of lay monitor Site 5 Livermore Cove. Solid lines on the plots border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 14. Squam Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 5 Livermore Cove. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 15. Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 5 Livermore Cove. Color expressed as platinum-cobalt units (ptu).
Figure 16. Squam Lake, 1992. Seasonal trends for Secchi Disk Depth (water transparency) of lay monitor Site 9A Squaw Cove Inner. Solid lines on the plots border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 17. Squam Lake, 1992. Seasonal trends for chlorophyll \(a \) concentration of lay monitor Site 9A Squaw Cove Inner. Chlorophyll \(a \) concentrations in parts per billion (ppb) of chlorophyll \(a \).

Figure 18. Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 9A Squaw Cove Inner. Color expressed as platinum-cobalt units (ptu).
Figure 19. Squam Lake, 1992. Seasonal trends for Secchi Disk Depth (water transparency) of lay monitor Site 9B Squaw Cove Outer. Solid lines on the plots border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 20. Squam Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 9B Squaw Cove Outer. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 21. Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 9B Squaw Cove Outer. Color expressed as platinum-cobalt units (ptu).
Figure 22. Squam Lake, 1992. Seasonal trends for Secchi Disk Depth (water transparency) of lay monitor Site 10 Sandwich Bay. Solid lines on the plots border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 23. Squam Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 10 Sandwich Bay. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 24. Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 10 Sandwich Bay. Color expressed as platinum-cobalt units (ptu).
Figure 25. Squam Lake, 1992. Seasonal trends for Secchi Disk Depth (water transparency) of lay monitor Site 11 Kent Island. Solid lines on the plots border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 26. Squam Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 11 Kent Island. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 27. Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 11 Kent Island. Color expressed as platinum-cobalt units (ptu).
Figure 28. Squam Lake, 1992. Seasonal trends for Secchi Disk Depth (water transparency) of lay monitor Site 12 Moultonborough Bay. Solid lines on the plots border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 29. Squam Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 12 Moultonborough Bay. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 30. Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 12 Moultonborough Bay. Color expressed as platinum-cobalt units (ptu).
Figure 31. Squam Lake, 1992. Seasonal trends for Secchi Disk Depth (water transparency) of lay monitor Site 14 Sturtevant Bay. Solid lines on the plots border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 32. Squam Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 14 Sturtevant Bay. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 33. Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 14 Sturtevant Bay. Color expressed as platinum-cobalt units (ptu).
Figure 34. Squam Lake, 1992. Seasonal trends for Secchi Disk Depth (water transparency) of lay monitor Site 16 Dog Cove. Solid lines on the plots border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 35. Squam Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 16 Dog Cove. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 36. Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 16 Dog Cove. Color expressed as platinum-cobalt units (ptu).
Figure 37. Little Squam Lake, 1992. Seasonal trends for chlorophyll a concentration of lake monitor Sites 1 West (squares) and 1B (crosses). Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 38. Little Squam Lake, 1992. Seasonal trends for dissolved color concentration of lake monitor Sites 1 West (squares) and 1B (crosses). Color expressed as platinum-cobalt units (ptu).
LITTLE SQUAM LAKE
CHLOROPHYL CONCENTRATION 1992

CHLOROPHYLL a (ppb)

^ EUTROPHIC ^

MESOTROPHIC v

^ OLIGOTROPHIC v

04/06 04/26 05/16 06/05 06/25 07/15 08/04 08/24 09/13 10/03 10/23

□ 1 WEST + 1B

LITTLE SQUAM LAKE
DISSOLVED COLOR CONCENTRATION 1992

DISSOLVED COLOR (pH)

1992 NH LLMP LAKES AVERAGE

04/06 04/26 05/16 06/05 06/25 07/15 08/04 08/24 09/13 10/03 10/23

□ 1 WEST + 1B
Figure 39. Squam Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Sites 2 Cotton Cove (squares), 5 Livermore Cove (crosses), 9A Squaw Cove Inner (diamonds), 9B Squaw Cove Outer (triangles) and 10 Sandwich Bay (X's). Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 40. Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Sites 2 Cotton Cove (squares), 5 Livermore Cove (crosses), 9A Squaw Cove Inner (diamonds), 9B Squaw Cove Outer (triangles) and 10 Sandwich Bay (X's). Color expressed as platinum-cobalt units (ptu).
Figure 41. Squam Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Sites 11 Kent Island (squares), 12 Moultonborough Bay (crosses), 14 Sturtevant Bay (diamonds) and 16 Dog Cove (triangles). Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 42. Squam Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Sites 11 Kent Island (squares), 14 Sturtevant Bay (crosses) and 16 Dog Cove (diamonds). Color expressed as platinum-cobalt units (ptu).
Figure 43. Profiles of temperature (TEMP.) and dissolved oxygen (OXYGEN) collected in Little Squam Lake, Site 1 West on (A) 16 June 1992 (B) 30 July 1992 and (C) 25 August 1992. Units of measurement are as indicated on the respective graphs. Oxygen and temperature were measured at one-half meter intervals.
TEMPERATURE - OXYGEN PROFILE
LITTLE SQUAM LAKE - SITE 1 WEST
JUNE 16, 1992

TEMPERATURE (C)

DEPTH (m)
0 5 10 15 20 25 30
0 5 10 15 20

OXYGEN (mg/l)
0 3 6 9 12 15 18

--- DISSOLVED OXYGEN --- TEMPERATURE

TEMPERATURE - OXYGEN PROFILE
LITTLE SQUAM LAKE - SITE 1 WEST
JULY 30, 1992

TEMPERATURE (C)

DEPTH (m)
0 5 10 15 20 25 30
0 5 10 15 20

OXYGEN (mg/l)
0 3 6 9 12 15 18

--- DISSOLVED OXYGEN --- TEMPERATURE

TEMPERATURE - OXYGEN PROFILE
LITTLE SQUAM LAKE - SITE 1 WEST
AUGUST 25, 1992

TEMPERATURE (C)

DEPTH (m)
0 5 10 15 20 25 30
0 5 10 15 20

OXYGEN (mg/l)
0 3 6 9 12 15 18

--- DISSOLVED OXYGEN --- TEMPERATURE
Figure 44. Profiles of temperature (TEMP.) and dissolved oxygen (OXYGEN) collected in Squam Lake at (A) Inner Squaw Cove on 25 August 1992, (B) Loon Reef on 16 June 1992, (C) Loon Reef on 30 July 1992, (D) Loon Reef on 25 August 1992, (E) Deep Haven on 30 July 1992 and (F) Deep Haven 25 August 1992. Units of measurement are as indicated on the respective graphs. Oxygen and temperature were measured at one-half meter intervals.
Figure 45. Pie diagram of Phytoplankton Abundance by algal class in Little Squam Lake, Site 1 East. Date and depth are as indicated above the graph.
Phytoplankton Abundance % by Algal Group

Cryptomonads 2.7%
Dinoflagellates 5.5%
Golden Algae 15.1%
Greens 1.4%
Bluegreens 4.1%
Diatoms 71.2%

16 June 1992
Depth 0-4.5m
Little Squam Lake - Site I East
Figure 46. Pie diagrams of Phytoplankton Abundance by algal class in Little Squam Lake, Site 1 West. Date and depth are as indicated above the respective graphs.
LITTLE SQUAM LAKE - SITE 1 WEST

PHYTOPLANKTON ABUNDANCE % BY ALGAL GROUP
Figure 47. Pie diagrams of Phytoplankton Abundance by algal class at Squam Lake, Deep Haven. Date and depth are as indicated above the respective graphs.
SQUAM LAKE DEEP HAVEN

PHYTOPLANKTON ABUNDANCE % BY ALGAL GROUP

DEPTH 10.5m
30 JULY 1992
- CRYPTOMONADS 4.8%
- DINOFLAGELLATES 6.4%
- DIATOMS 28.8%
- GREENS 3.2%
- GOLDEN ALGAE 56.8%

DEPTH 0-8.5m
25 AUGUST 1992
- BLUEGREENS 42.3%
- DIATOMS 14.1%
- GREENS 1.4%
- DESMIDS 4.2%
- DINOFLAGELLATES 2.8%
- GOLDEN ALGAE 22.5%

DEPTH 9.5m
25 AUGUST 1992
- CRYPTOMONADS 17.2%
- DESMIDS 1.7%
- BLUEGREENS 4.3%
- DIATOMS 12.9%
- DINOFLAGELLATES 35.3%
- GOLDEN ALGAE 28.4%
Figure 48. Pie diagrams of Phytoplankton Abundance by algal class at Squam Lake, Loon Reef. Date and depth are as indicated above the respective graphs.
SQUAM LAKE - LOON REEF

PHYTOPLANKTON ABUNDANCE % BY ALGAL GROUP
Figure 49. Pie diagram of Macro-Zooplankton Diversity by organism for Little Squam Lake, Site 1 West. Date and depth of Macro-Zooplankton tow are as indicated above the respective graphs.
SITE 1 WEST
MACROZOOPLANKTON DATA 0-17.5m
6-16-92

- EUBOSMINA 0.48
- HOLOPEDIUM 0.42
- DIAPHANOSOMA 0.06
- D. SOHODLENI 0.18
- D. DUBIA 0.06
- DIAPTORUMUS 0.48
- C. COPEPODID 0.06
- CYCLOPOIDS 0.9
- CERIODAPHNIA 0.06

SITE 1 WEST
MACROZOOPLANKTON DATA 0-18.0m
7-30-92

- HOLOPEDIAUM 0.57
- BOSMINA 0.22
- D. AMBIGUA 0.11
- D. DUBIA 0.11
- CYCLOPOIDS 0.9
- C. COPEPODID 0.11
- DIAPTORUMUS 0.68

SITE 1 WEST
MACROZOOPLANKTON DATA 0-17.5m
8-25-92

- DIAPHANOSOMA 0.03
- D. AMBIGUA 0.24
- D. DUBIA 0.24
- EUBOSMINA 0.08
- BOSMINA 0.06
- DIAPTORUMUS 0.39
- C. COPEPODID 0.06
- CYCLOPOIDS 1.27

LITTLE SQUAM LAKE

NUMBERS SHOWN ARE # OF ANIMALS PER LITER
Figure 50. Pie diagrams of Macro-Zooplankton Diversity by organism for Squam Lake, Deep Haven. Date and depth of Macro-Zooplankton tow are as indicated above the respective graphs.
SQUAM LAKE - DEEP HAVEN
MACROZOOPLANKTON DATA 0-30.0m
7-30-92

- CERIODAPHNIA 0.28
- BOSMINA 0.56
- EUBOSMINA 0.36
- HOLOPEDIUM 0.67
- DIAPHANOSOMA 0.1
- D. COPEPODID 0.07
- C. COPEPODID 0.49
- DIAPTONUS 2.29

* Daphnia catawba, Daphnia dubia and Daphnia ambigu

SQUAM LAKE - DEEP HAVEN
MACROZOOPLANKTON DATA 0-29.5m
8-25-92

- CYCLOPOIDS 1.37
- POLYPHEMUS 0.03
- CERIODAPHNIA 0.3
- BOSMINA 0.07
- EUBOSMINA 0.12
- HOLOPEDIUM 0.18
- DIAPTONUS 0.48
- C. COPEPODID 0.14
- D. COPEPODID 0.02
- DIAPHANOSOMA 0.14

D. SPECIES - D. LONGIREMIS & D.AMBIGUA
Figure 51. Pie diagrams of Macro-Zooplankton Diversity by organism for Squam Lake, Loon Reef. Date and depth of Macro-Zooplankton tow are as indicated above the respective graphs.
Figure 52. Pie diagram of Macro-Zooplankton Diversity by organism for Squam Lake, Inner Squaw Cove. Date and depth of Macro-Zooplankton tow are as indicated above the graph.
SQUAM LAKE - INNER SQUAW COVE
MACROZOOPLANKTON DATA 0-4.0m
6-16-92

DIAPHANOSOMA 5.3

HOLOPEDIUM 0.26
EUBOSMINA 0.79
CERIODAPHNIA 0.53
D. AMBIGUA 0.26
DIAPTOPUS 1.06
CYCLOPOIDS 3.44

NUMBERS SHOW ARE # OF ANIMALS PER LITER
Figure 53. Comparison of Little Squam Lake 1992 Lay monitor Chlorophyll a data with 1979-1991 data at site 1 West and 1983-1991 data at site 1B. Minimum, Mean and Maximum values for each site are indicated as shown in the first bar. Chlorophyll a Concentration is measured in parts per billion (ppb) which is equivalent to milligrams per cubic meter. The higher the chlorophyll a levels the "greener" the water (i.e. more algae growth).

Figure 54. Comparison of Little Squam Lake 1992 lay monitor Secchi Disk Transparency data with 1979-1991 data at site 1 West and 1983-1991 data at site 1B. Minimum, Mean and Maximum values for each site are indicated as shown in the first bar. Secchi disk readings are taken to the nearest 0.1 meter. The deeper the Secchi Disk Depth the clearer the water.
COMPARISON: 1992 TO HISTORICAL DATA
LITTLE SQUAM LAKE CHLOROPHYLL a
LAY MONITOR DATA

LEGEND
KEY
MINIMUM
AVERAGE
MAXIMUM

1979-1991
1 West 1992
1983-1991
1B 1992

CHLOROPHYLL a CONCENTRATION (ppb)

The higher number = more algae

COMPARISON: 1992 TO HISTORICAL DATA
LITTLE SQUAM LAKE WATER CLARITY
LAY MONITOR DATA

LEGEND
KEY
MINIMUM
AVERAGE
MAXIMUM

1979-1991
1 West 1992
1983-1991
1B 1992

SECCHI DISK DEPTH (m)

The higher number = clearer water
Figure 55. Comparison of Squam Lake 1992 Lay monitor Chlorophyll a data with historical data. Minimum, Mean and Maximum values for each site are indicated as shown in the first bar. Chlorophyll a Concentration is measured in parts per billion (ppb) which is equivalent to milligrams per cubic meter. The higher the chlorophyll a levels the "greener" the water (i.e. more algae growth).
COMPARISON: 1992 TO HISTORICAL DATA
SQUAM LAKE CHLOROPHYLL a
LAY MONITOR DATA

LEGEND
KEY
1979-1991
2 Cotton 1992
1979-1991
5 Livermo 1992
1980-1991
9A SquawI 1992
1979-1991
9B SquawO 1992
1979-1991
10 Sandwic 1992
1979-1991
11 Kent Is 1992
1982-1991
12 Moulton 1992
1979-1991
14 Sturtev 1992
1979-1991
16 Dog Cov 1992

CHLOROPHYLL a CONCENTRATION (ppb)

The higher number = more algae
Figure 56. Comparison of Squam Lake 1992 lay monitor Secchi Disk Transparency data with historical data. Minimum, Mean and Maximum values for each site are indicated as shown in the first bar. Secchi disk readings are taken to the nearest 0.1 meter. The deeper the Secchi Disk Depth the clearer the water.
COMPARISON: 1992 TO HISTORICAL DATA
SQUAM LAKE WATER CLARITY
LAY MONITOR DATA

** SECCHI DISK RESTED ON LAKE BOTTOM

LEGEND KEY

1979-1991
2 Cotton 1992

1979-1991
5 Livermo 1992

1980-1991
9A Squawl 1992

1979-1991
9B SquawO 1992

1979-1991
10 Sandwic 1992

1979-1991
11 Kent Is 1992

1982-1991
12 Moulton 1992

1979-1991
14 Sturtev 1992

1979-1991
16 Dog Cov 1992

The higher number = clearer water
Figure 57. Little Squam Lake, Site 1 West. Comparison of 1992 Chlorophyll a Concentrations with previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The greater the concentration of chlorophyll a the "greener" the lake (more algal growth).

Figure 58. Little Squam Lake, Site 1 West. Comparison of 1992 Secchi Disk Transparencies to previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi Disk readings are taken to the nearest tenth (0.1) of a meter.
LITTLE SQUAM LAKE - SITE 1 WEST
YEARLY COMPARISONS OF CHLOROPHYLL \alpha DATA
LAY MONITOR DATA

YEAR

The higher number = more algae

LITTLE SQUAM LAKE - SITE 1 WEST
YEARLY COMPARISONS OF SECCHI DISK DATA
LAY MONITOR DATA

YEAR

The higher number = clearer water
Figure 59. Little Squam Lake, Site 1B. Comparison of 1992 Chlorophyll a Concentrations with previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The greater the concentration of chlorophyll a the "greener" the lake (more algal growth).

Figure 60. Little Squam Lake, Site 1B. Comparison of 1992 Secchi Disk Transparencies to previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi Disk readings are taken to the nearest tenth (0.1) of a meter.
LITTLE SQUAM LAKE - SITE 1B
YEARLY COMPARISONS OF CHLOROPHYLL a DATA
LAY MONITOR DATA

YEAR

MINIMUM AVERAGE MAXIMUM

LOW MODERATE

Chlorophyll a concentration (ppb)

The higher number = more algae

LITTLE SQUAM LAKE - SITE 1B
YEARLY COMPARISONS OF SECCHI DISK DATA
LAY MONITOR DATA

YEAR

MINIMUM AVERAGE MAXIMUM

LOW MODERATE

Secchi Disk Depth (meters)

The higher number = clearer water
Figure 61. Squam Lake, Site 2 Cotton Cove. Comparison of 1992 Chlorophyll a Concentrations with previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The greater the concentration of chlorophyll a the "greener" the lake (more algal growth).

Figure 62. Squam Lake, Site 2 Cotton Cove. Comparison of 1992 Secchi Disk Transparencies to previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi Disk readings are taken to the nearest tenth (0.1) of a meter.
SQUAM LAKE - SITE 2 COTTON COVE
YEARLY COMPARISONS OF CHLOROPHYLL a DATA
LAY MONITOR DATA

YEAR

1979
1981
1984
1985
1986
1987
1988
1989
1990
1991
1992

MINIMUM
AVERAGE
MAXIMUM

0 1 2 3 4 5
Chlorophyll a concentration (ppb)

The higher number = more algae

SQUAM LAKE - SITE 2 COTTON COVE
YEARLY COMPARISONS OF SECCHI DISK DATA
LAY MONITOR DATA

YEAR

1979
1980
1981
1984
1985
1986
1987
1988
1989
1990
1991
1992

MINIMUM
AVERAGE
MAXIMUM

0 2 4 6 8 10 12
Secchi Disk Depth (meters)

The higher number = clearer water
Figure 63. Squam Lake, Site 5 Livermore Cove. Comparison of 1992 Chlorophyll a Concentrations with previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The greater the concentration of chlorophyll a the "greener" the lake (more algal growth).

Figure 64. Squam Lake, Site 5 Livermore Cove. Comparison of 1992 Secchi Disk Transparencies to previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi Disk readings are taken to the nearest tenth (0.1) of a meter.
SQUAM LAKE - SITE 5 LIVERMORE COVE
YEARLY COMPARISONS OF CHLOROPHYLL a DATA
LAY MONITOR DATA

YEAR

Chlorophyll a concentration (ppb)

The higher number = more algae

SQUAM LAKE - SITE 5 LIVERMORE COVE
YEARLY COMPARISONS OF SECCHI DISK DATA
LAY MONITOR DATA

YEAR

Secchi Disk Depth (meters)

The higher number = clearer water
SQUAM LAKE - SITE 9A INNER SQUAW COVE
YEARLY COMPARISONS OF CHLOROPHYLL a DATA
LAY MONITOR DATA

YEAR

MINIMUM AVERAGE MAXIMUM
LOW MODERATE HIGH

Chlorophyll a concentration (ppb)

The higher number = more algae

SQUAM LAKE - SITE 9A INNER SQUAW COVE
YEARLY COMPARISONS OF SECCHI DISK DATA
LAY MONITOR DATA

YEAR

MINIMUM AVERAGE MAXIMUM
LOW MODERATE HIGH

Secchi Disk Depth (meters)

The higher number = clearer water
Figure 65. Squam Lake, Site 9A Squaw Cove Inner. Comparison of 1992 Chlorophyll a Concentrations with previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The greater the concentration of chlorophyll a the "greener" the lake (more algal growth).

Figure 66. Squam Lake, Site 9A Squaw Cove Inner. Comparison of 1992 Secchi Disk Transparencies to previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi Disk readings are taken to the nearest tenth (0.1) of a meter.
Figure 67. Squam Lake, Site 9B Squaw Cove Outer. Comparison of 1992 Chlorophyll a Concentrations with previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The greater the concentration of chlorophyll a the "greener" the lake (more algal growth).

Figure 68. Squam Lake, Site 9B Squaw Cove Outer. Comparison of 1992 Secchi Disk Transparencies to previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi Disk readings are taken to the nearest tenth (0.1) of a meter.
The higher number = more algae

The higher number = clearer water
Figure 69. Squam Lake, Site 10 Sandwich Bay. Comparison of 1992 Chlorophyll a Concentrations with previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The greater the concentration of chlorophyll a the "greener" the lake (more algal growth).

Figure 70. Squam Lake, Site 10 Sandwich Bay. Comparison of 1992 Secchi Disk Transparencies to previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi Disk readings are taken to the nearest tenth (0.1) of a meter.
SQUAM LAKE - SITE 10 SANDWICH BAY
YEARLY COMPARISONS OF CHLOROPHYLL a DATA
LAY MONITOR DATA

YEAR

MINIMUM AVERAGE MAXIMUM

LOW MODERATE HIGH

Chlorophyll a concentration (ppb)

The higher number = more algae

SQUAM LAKE - SITE 10 SANDWICH BAY
YEARLY COMPARISONS OF SECCHI DISK DATA
LAY MONITOR DATA

YEAR

MINIMUM AVERAGE MAXIMUM

LOW MODERATE HIGH

Secchi Disk Depth (meters)

The higher number = clearer water
Figure 71. Squam Lake, Site 11 Kent Island. Comparison of 1992 Chlorophyll \(a \) Concentrations with previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The greater the concentration of chlorophyll \(a \) the "greener" the lake (more algal growth).

Figure 72. Squam Lake, Site 11 Kent Island. Comparison of 1992 Secchi Disk Transparencies to previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi Disk readings are taken to the nearest tenth (0.1) of a meter.
SQUAM LAKE - SITE 11 KENT ISLAND
YEARLY COMPARISONS OF CHLOROPHYLL a DATA
LAY MONITOR DATA

YEAR

The higher number = more algae

SQUAM LAKE - SITE 11 KENT ISLAND
YEARLY COMPARISONS OF SECCHI DISK DATA
LAY MONITOR DATA

YEAR

The higher number = clearer water
Figure 73. Squam Lake, Site 12 Moultonborough Bay. Comparison of 1992 Chlorophyll a Concentrations with previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The greater the concentration of chlorophyll a the "greener" the lake (more algal growth).

Figure 74. Squam Lake, Site 12 Moultonborough Bay. Comparison of 1992 Secchi Disk Transparencies to previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi Disk readings are taken to the nearest tenth (0.1) of a meter.
SQUAM LAKE - SITE 12 MOULTONBORO BAY
YEARLY COMPARISONS OF CHLOROPHYLL a DATA
LAY MONITOR DATA

YEAR

MINIMUM AVERAGE MAXIMUM

LOW MODERATE

Chlorophyll a concentration (ppb)

The higher number = more algae

SQUAM LAKE - SITE 12 MOULTONBORO BAY
YEARLY COMPARISONS OF SECCHI DISK DATA
LAY MONITOR DATA

YEAR

MINIMUM AVERAGE MAXIMUM

LOW MODERATE HIGH

Secchi Disk Depth (meters)

The higher number = clearer water
Figure 75. Squam Lake, Site 14 Sturtevant Bay. Comparison of 1992 Chlorophyll a Concentrations with previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The greater the concentration of chlorophyll a the "greener" the lake (more algal growth).

Figure 76. Squam Lake, Site 14 Sturtevant Bay. Comparison of 1992 Secchi Disk Transparencies to previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi Disk readings are taken to the nearest tenth (0.1) of a meter.
SQUAM LAKE - SITE 14 STURTEVANT BAY
YEARLY COMPARISONS OF CHLOROPHYLL a DATA
LAY MONITOR DATA

YEAR

1979
1980
1981
1982
1983
1984
1988
1990
1991
1992

MINIMUM
AVERAGE
MAXIMUM
LOW
MODERATE
HIGH

Chlorophyll a concentration (ppb)

The higher number = more algae

SQUAM LAKE - SITE 14 STURTEVANT BAY
YEARLY COMPARISONS OF SECCHI DISK DATA
LAY MONITOR DATA

YEAR

1979
1980
1981
1982
1983
1984
1988
1990
1991
1992

MINIMUM
AVERAGE
MAXIMUM
LOW
MODERATE
HIGH

Secchi Disk Depth (meters)

The higher number = clearer water
Figure 77. Squam Lake, Site 16 Dog Cove. Comparison of 1992 Chlorophyll a Concentrations with previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The greater the concentration of chlorophyll a the "greener" the lake (more algal growth).

Figure 78. Squam Lake, Site 16 Dog Cove. Comparison of 1992 Secchi Disk Transparencies to previous yearly data. The patterns of the bars display the minimum, mean and maximum values for each year sampled while the length of the bar represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi Disk readings are taken to the nearest tenth (0.1) of a meter.
SQUAM LAKE - SITE 16 DOG COVE
YEARLY COMPARISONS OF CHLOROPHYLL a DATA
LAY MONITOR DATA

YEAR

1979
1982
1984
1988
1989
1990
1991
1992

MINIMUM
AVERAGE
MAXIMUM
LOW
MODERATE

Chlorophyll a concentration (ppb)

The higher number = more algae

SQUAM LAKE - SITE 16 DOG COVE
YEARLY COMPARISONS OF SECCHI DISK DATA
LAY MONITOR DATA

YEAR

1979
1982
1984
1985
1988
1989
1990
1991
1992

MINIMUM
AVERAGE
MAXIMUM
LOW
MODERATE

Secchi Disk Depth (meters)

The higher number = clearer water
The Squam Lakes Data on file as of 01/04/1993

Lakes Lay Monitoring Program, U.N.H.

[Lay Monitor Data]

Squam Lake, NH
-- subset of trophic indicators, all sites, 1992

1992 SUMMARY
Average transparency: 6.7 (1992: 131 values; 3.0 - 9.5 range)
Average chlorophyll: 2.6 (1992: 99 values; 0.9 - 7.0 range)
Average alk (gray): 6.4 (1992: 31 values; 5.2 - 8.2 range)
Average alk (pink): 7.0 (1992: 31 values; 5.5 - 8.9 range)
Average color, 440: 19.7 (1992: 88 values; 6.9 - 52.4 range)

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Transparency (m)</th>
<th>Chl a (ppb)</th>
<th>Total Phos (ppb)</th>
<th>Alk. (gray) ph 5.1</th>
<th>Alk. (pink) ph 4.6</th>
<th>Color Pt-Co units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 West</td>
<td>06/18/1992</td>
<td>6.6</td>
<td>1.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>35.2</td>
</tr>
<tr>
<td>1 West</td>
<td>06/28/1992</td>
<td>6.8</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>24.1</td>
</tr>
<tr>
<td>1 West</td>
<td>07/06/1992</td>
<td>6.3</td>
<td>2.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>27.5</td>
</tr>
<tr>
<td>1 West</td>
<td>07/11/1992</td>
<td>6.1</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>24.1</td>
</tr>
<tr>
<td>1 West</td>
<td>07/18/1992</td>
<td>7.4</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>9.4</td>
</tr>
<tr>
<td>1 West</td>
<td>07/26/1992</td>
<td>7.0</td>
<td>1.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>6.9</td>
</tr>
<tr>
<td>1 West</td>
<td>08/02/1992</td>
<td>7.4</td>
<td>1.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>14.6</td>
</tr>
<tr>
<td>1 West</td>
<td>08/07/1992</td>
<td>7.5</td>
<td>1.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>19.8</td>
</tr>
<tr>
<td>1 West</td>
<td>08/17/1992</td>
<td>7.3</td>
<td>4.9</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>12.0</td>
</tr>
<tr>
<td>1 West</td>
<td>08/21/1992</td>
<td>8.4</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>15.5</td>
</tr>
<tr>
<td>1 West</td>
<td>08/30/1992</td>
<td>8.1</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>17.2</td>
</tr>
<tr>
<td>1 West</td>
<td>09/06/1992</td>
<td>8.2</td>
<td>3.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>20.6</td>
</tr>
<tr>
<td>1 West</td>
<td>09/11/1992</td>
<td>8.2</td>
<td>3.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1B</td>
<td>06/18/1992</td>
<td>6.5</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>28.3</td>
</tr>
<tr>
<td>1B</td>
<td>06/28/1992</td>
<td>6.3</td>
<td>2.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>43.0</td>
</tr>
<tr>
<td>1B</td>
<td>07/06/1992</td>
<td>6.3</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>38.7</td>
</tr>
<tr>
<td>1B</td>
<td>07/11/1992</td>
<td>5.7</td>
<td>1.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>31.8</td>
</tr>
<tr>
<td>1B</td>
<td>07/18/1992</td>
<td>7.8</td>
<td>1.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>30.9</td>
</tr>
<tr>
<td>1B</td>
<td>07/26/1992</td>
<td>6.0</td>
<td>1.7</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>12.0</td>
</tr>
<tr>
<td>1B</td>
<td>08/02/1992</td>
<td>7.5</td>
<td>2.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>17.2</td>
</tr>
<tr>
<td>1B</td>
<td>08/07/1992</td>
<td>7.8</td>
<td>1.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>15.5</td>
</tr>
<tr>
<td>1B</td>
<td>08/17/1992</td>
<td>7.8</td>
<td>3.9</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>18.9</td>
</tr>
<tr>
<td>1B</td>
<td>08/21/1992</td>
<td>8.3</td>
<td>2.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>18.9</td>
</tr>
<tr>
<td>1B</td>
<td>08/30/1992</td>
<td>8.1</td>
<td>3.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>14.6</td>
</tr>
<tr>
<td>1B</td>
<td>09/06/1992</td>
<td>8.1</td>
<td>3.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>37.8</td>
</tr>
<tr>
<td>1B</td>
<td>09/11/1992</td>
<td>7.8</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2 Cotton</td>
<td>06/20/1992</td>
<td>5.7</td>
<td>3.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>21.5</td>
</tr>
<tr>
<td>2 Cotton</td>
<td>06/29/1992</td>
<td>4.7</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2 Cotton</td>
<td>07/03/1992</td>
<td>4.9</td>
<td>1.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>11.2</td>
</tr>
<tr>
<td>2 Cotton</td>
<td>07/11/1992</td>
<td>4.9</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2 Cotton</td>
<td>07/19/1992</td>
<td>6.8</td>
<td>2.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>7.7</td>
</tr>
<tr>
<td>2 Cotton</td>
<td>07/25/1992</td>
<td>7.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2 Cotton</td>
<td>08/02/1992</td>
<td>7.7</td>
<td>1.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>10.3</td>
</tr>
<tr>
<td>Site</td>
<td>Date</td>
<td>Transparency (m)</td>
<td>Chl a (ppb)</td>
<td>Total Phos (ppb)</td>
<td>Alk. (gray) ph 5.1</td>
<td>Alk. (pink) ph 4.6</td>
<td>Color Pt-Co units</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2 Cotton</td>
<td>08/08/1992</td>
<td>7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Cotton</td>
<td>08/17/1992</td>
<td>6.6</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td>9.4</td>
</tr>
<tr>
<td>2 Cotton</td>
<td>08/22/1992</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Cotton</td>
<td>08/30/1992</td>
<td>5.8</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td>10.3</td>
</tr>
<tr>
<td>2 Cotton</td>
<td>09/05/1992</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Cotton</td>
<td>09/11/1992</td>
<td>6.1</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
</tr>
<tr>
<td>5 Livermo</td>
<td>06/22/1992</td>
<td>6.0</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td>30.1</td>
</tr>
<tr>
<td>5 Livermo</td>
<td>07/07/1992</td>
<td>5.8</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td>11.2</td>
</tr>
<tr>
<td>5 Livermo</td>
<td>07/11/1992</td>
<td>6.3</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>5 Livermo</td>
<td>07/19/1992</td>
<td>9.5</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td>10.3</td>
</tr>
<tr>
<td>5 Livermo</td>
<td>08/02/1992</td>
<td>8.4</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td>14.6</td>
</tr>
<tr>
<td>5 Livermo</td>
<td>08/16/1992</td>
<td>7.0</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td>8.6</td>
</tr>
<tr>
<td>5 Livermo</td>
<td>08/30/1992</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Livermo</td>
<td>09/04/1992</td>
<td>7.5</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td>17.2</td>
</tr>
<tr>
<td>5 Livermo</td>
<td>09/07/1992</td>
<td>5.8</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
</tr>
<tr>
<td>9A SquawI</td>
<td>06/22/1992</td>
<td>4.0</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9A SquawI</td>
<td>06/27/1992</td>
<td>4.5</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9A SquawI</td>
<td>07/03/1992</td>
<td>3.5</td>
<td>4.8</td>
<td></td>
<td>6.5</td>
<td>7.6</td>
<td>52.4</td>
</tr>
<tr>
<td>9A SquawI</td>
<td>07/10/1992</td>
<td>3.5</td>
<td>3.6</td>
<td></td>
<td>7.2</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>9A SquawI</td>
<td>07/17/1992</td>
<td>3.0</td>
<td>5.2</td>
<td></td>
<td>7.9</td>
<td>8.8</td>
<td>43.8</td>
</tr>
<tr>
<td>9A SquawI</td>
<td>07/26/1992</td>
<td>3.5</td>
<td>3.0</td>
<td></td>
<td>8.2</td>
<td>8.9</td>
<td>30.9</td>
</tr>
<tr>
<td>9A SquawI</td>
<td>08/02/1992</td>
<td>4.2</td>
<td>2.0</td>
<td></td>
<td>7.5</td>
<td>8.0</td>
<td>32.6</td>
</tr>
<tr>
<td>9A SquawI</td>
<td>08/16/1992</td>
<td>4.0</td>
<td>2.0</td>
<td></td>
<td>7.8</td>
<td>8.5</td>
<td>26.6</td>
</tr>
<tr>
<td>9A SquawI</td>
<td>08/17/1992</td>
<td>3.8</td>
<td>2.8</td>
<td></td>
<td>7.6</td>
<td>8.5</td>
<td>24.9</td>
</tr>
<tr>
<td>9A SquawI</td>
<td>08/21/1992</td>
<td>4.0</td>
<td>3.2</td>
<td></td>
<td>7.7</td>
<td>8.4</td>
<td>28.3</td>
</tr>
<tr>
<td>9A SquawI</td>
<td>08/28/1992</td>
<td>3.9</td>
<td>3.1</td>
<td></td>
<td>7.9</td>
<td>8.8</td>
<td>24.9</td>
</tr>
<tr>
<td>9A SquawI</td>
<td>09/05/1992</td>
<td>4.1</td>
<td>2.9</td>
<td></td>
<td>7.8</td>
<td>8.4</td>
<td>32.6</td>
</tr>
<tr>
<td>9A SquawI</td>
<td>09/11/1992</td>
<td>5.3</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td>19.8</td>
</tr>
<tr>
<td>9B SquawO</td>
<td>06/22/1992</td>
<td>4.3</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9B SquawO</td>
<td>06/27/1992</td>
<td>5.0</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9B SquawO</td>
<td>07/03/1992</td>
<td>4.2</td>
<td>3.0</td>
<td></td>
<td>6.3</td>
<td>6.8</td>
<td>15.5</td>
</tr>
<tr>
<td>9B SquawO</td>
<td>07/10/1992</td>
<td>4.0</td>
<td>3.0</td>
<td></td>
<td>6.3</td>
<td>6.8</td>
<td>16.3</td>
</tr>
<tr>
<td>9B SquawO</td>
<td>07/17/1992</td>
<td>3.8</td>
<td>3.6</td>
<td></td>
<td>5.7</td>
<td>6.5</td>
<td>20.6</td>
</tr>
<tr>
<td>9B SquawO</td>
<td>07/26/1992</td>
<td>4.3</td>
<td>3.0</td>
<td></td>
<td>6.3</td>
<td>6.9</td>
<td>31.8</td>
</tr>
<tr>
<td>9B SquawO</td>
<td>08/02/1992</td>
<td>4.5</td>
<td>4.3</td>
<td></td>
<td>6.4</td>
<td>6.9</td>
<td>17.2</td>
</tr>
<tr>
<td>9B SquawO</td>
<td>08/07/1992</td>
<td>4.5</td>
<td>2.0</td>
<td></td>
<td>6.3</td>
<td>7.9</td>
<td>16.3</td>
</tr>
<tr>
<td>9B SquawO</td>
<td>08/16/1992</td>
<td>4.8</td>
<td>1.3</td>
<td></td>
<td>6.3</td>
<td>7.0</td>
<td>14.6</td>
</tr>
<tr>
<td>9B SquawO</td>
<td>08/21/1992</td>
<td>4.8</td>
<td>2.6</td>
<td></td>
<td>6.5</td>
<td>7.2</td>
<td>23.2</td>
</tr>
<tr>
<td>9B SquawO</td>
<td>08/28/1992</td>
<td>4.8</td>
<td>3.1</td>
<td></td>
<td>6.3</td>
<td>7.1</td>
<td>18.0</td>
</tr>
<tr>
<td>9B SquawO</td>
<td>09/05/1992</td>
<td>5.0</td>
<td>2.4</td>
<td></td>
<td>6.6</td>
<td>7.2</td>
<td>22.3</td>
</tr>
<tr>
<td>9B SquawO</td>
<td>09/11/1992</td>
<td>5.0</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td>51.5</td>
</tr>
<tr>
<td>10 Sandwic</td>
<td>06/22/1992</td>
<td>7.3</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td>24.1</td>
</tr>
<tr>
<td>10 Sandwic</td>
<td>06/29/1992</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Sandwic</td>
<td>07/06/1992</td>
<td>7.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td>16.3</td>
</tr>
<tr>
<td>10 Sandwic</td>
<td>07/10/1992</td>
<td>---</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td>10.3</td>
</tr>
<tr>
<td>10 Sandwic</td>
<td>07/13/1992</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Sandwic</td>
<td>07/26/1992</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Sandwic</td>
<td>08/02/1992</td>
<td>8.0</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td>11.2</td>
</tr>
</tbody>
</table>
The Squam Lakes Data on file as of 01/04/1993

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Transparency (m)</th>
<th>Chl a (ppb)</th>
<th>Total Phos (ppb)</th>
<th>Alk. (gray ph 5.1)</th>
<th>Alk. (pink ph 4.6)</th>
<th>Color Pt-Co units</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Sandwic</td>
<td>08/17/1992</td>
<td>7.3</td>
<td>4.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10 Sandwic</td>
<td>08/23/1992</td>
<td>7.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10 Sandwic</td>
<td>09/01/1992</td>
<td>7.7</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10 Sandwic</td>
<td>09/11/1992</td>
<td>8.3</td>
<td>2.6</td>
<td>---</td>
<td>---</td>
<td>14.6</td>
<td>---</td>
</tr>
<tr>
<td>11 Kent Is</td>
<td>06/22/1992</td>
<td>9.5</td>
<td>1.7</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>6.9</td>
</tr>
<tr>
<td>11 Kent Is</td>
<td>06/28/1992</td>
<td>8.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11 Kent Is</td>
<td>07/07/1992</td>
<td>8.7</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>12.9</td>
</tr>
<tr>
<td>11 Kent Is</td>
<td>07/12/1992</td>
<td>8.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11 Kent Is</td>
<td>07/20/1992</td>
<td>9.0</td>
<td>2.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>12.0</td>
</tr>
<tr>
<td>11 Kent Is</td>
<td>08/03/1992</td>
<td>9.5</td>
<td>1.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11 Kent Is</td>
<td>08/10/1992</td>
<td>9.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11 Kent Is</td>
<td>08/19/1992</td>
<td>9.0</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11 Kent Is</td>
<td>08/26/1992</td>
<td>9.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11 Kent Is</td>
<td>09/02/1992</td>
<td>9.3</td>
<td>1.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11 Kent Is</td>
<td>09/08/1992</td>
<td>9.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11 Kent Is</td>
<td>09/15/1992</td>
<td>9.0</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12 Moulton</td>
<td>06/23/1992</td>
<td>7.0</td>
<td>2.7</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12 Moulton</td>
<td>06/28/1992</td>
<td>6.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>19.8</td>
<td>---</td>
</tr>
<tr>
<td>12 Moulton</td>
<td>07/05/1992</td>
<td>7.2</td>
<td>2.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12 Moulton</td>
<td>07/06/1992</td>
<td>6.8</td>
<td>2.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12 Moulton</td>
<td>07/18/1992</td>
<td>7.2</td>
<td>2.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12 Moulton</td>
<td>07/26/1992</td>
<td>8.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12 Moulton</td>
<td>08/07/1992</td>
<td>8.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12 Moulton</td>
<td>08/15/1992</td>
<td>7.2</td>
<td>4.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>10.3</td>
</tr>
<tr>
<td>12 Moulton</td>
<td>08/21/1992</td>
<td>7.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12 Moulton</td>
<td>08/29/1992</td>
<td>7.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>18.9</td>
<td>---</td>
</tr>
<tr>
<td>12 Moulton</td>
<td>09/04/1992</td>
<td>6.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12 Moulton</td>
<td>09/11/1992</td>
<td>7.2</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>15.5</td>
<td>---</td>
</tr>
<tr>
<td>14 Sturtev</td>
<td>06/23/1992</td>
<td>7.5</td>
<td>2.8</td>
<td>---</td>
<td>---</td>
<td>35.2</td>
<td>---</td>
</tr>
<tr>
<td>14 Sturtev</td>
<td>06/28/1992</td>
<td>7.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14 Sturtev</td>
<td>07/03/1992</td>
<td>6.0</td>
<td>0.9</td>
<td>---</td>
<td>---</td>
<td>11.2</td>
<td>---</td>
</tr>
<tr>
<td>14 Sturtev</td>
<td>07/10/1992</td>
<td>6.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14 Sturtev</td>
<td>07/18/1992</td>
<td>7.4</td>
<td>1.7</td>
<td>---</td>
<td>---</td>
<td>12.0</td>
<td>---</td>
</tr>
<tr>
<td>14 Sturtev</td>
<td>08/01/1992</td>
<td>7.8</td>
<td>1.8</td>
<td>---</td>
<td>---</td>
<td>11.2</td>
<td>---</td>
</tr>
<tr>
<td>14 Sturtev</td>
<td>08/07/1992</td>
<td>8.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14 Sturtev</td>
<td>08/15/1992</td>
<td>7.5</td>
<td>2.5</td>
<td>---</td>
<td>---</td>
<td>12.0</td>
<td>---</td>
</tr>
<tr>
<td>14 Sturtev</td>
<td>08/22/1992</td>
<td>7.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14 Sturtev</td>
<td>08/29/1992</td>
<td>7.2</td>
<td>1.9</td>
<td>---</td>
<td>---</td>
<td>6.9</td>
<td>---</td>
</tr>
<tr>
<td>14 Sturtev</td>
<td>09/05/1992</td>
<td>6.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14 Sturtev</td>
<td>09/11/1992</td>
<td>7.5</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>14.6</td>
<td>---</td>
</tr>
<tr>
<td>16 Dog Cov</td>
<td>06/21/1992</td>
<td>6.0</td>
<td>3.8</td>
<td>---</td>
<td>---</td>
<td>12.9</td>
<td>---</td>
</tr>
<tr>
<td>16 Dog Cov</td>
<td>06/29/1992</td>
<td>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>16 Dog Cov</td>
<td>07/06/1992</td>
<td>5.3</td>
<td>3.0</td>
<td>---</td>
<td>---</td>
<td>27.5</td>
<td>---</td>
</tr>
<tr>
<td>16 Dog Cov</td>
<td>07/13/1992</td>
<td>3.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>16 Dog Cov</td>
<td>07/20/1992</td>
<td>8.5</td>
<td>1.8</td>
<td>---</td>
<td>---</td>
<td>11.2</td>
<td>---</td>
</tr>
<tr>
<td>16 Dog Cov</td>
<td>07/26/1992</td>
<td>6.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>16 Dog Cov</td>
<td>08/02/1992</td>
<td>7.0</td>
<td>2.8</td>
<td>---</td>
<td>---</td>
<td>7.7</td>
<td>---</td>
</tr>
</tbody>
</table>
The Squam Lakes Data on file as of 01/04/1993

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Transparency (m)</th>
<th>Chl a (ppb)</th>
<th>Total Phos (ppb)</th>
<th>Alk. (gray) ph 5.1</th>
<th>Alk. (pink) ph 4.6</th>
<th>Color Pt-Co units</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Dog Cov</td>
<td>08/18/1992</td>
<td>6.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>16 Dog Cov</td>
<td>08/23/1992</td>
<td>7.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>16 Dog Cov</td>
<td>09/02/1992</td>
<td>7.2</td>
<td>2.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Loon Reef</td>
<td>09/11/1992</td>
<td>7.0</td>
<td>2.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>9.4</td>
</tr>
<tr>
<td>Loon Reef</td>
<td>06/29/1992</td>
<td>---</td>
<td>---</td>
<td>5.2</td>
<td>5.6</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Loon Reef</td>
<td>07/07/1992</td>
<td>---</td>
<td>---</td>
<td>5.2</td>
<td>5.6</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Loon Reef</td>
<td>07/12/1992</td>
<td>---</td>
<td>---</td>
<td>5.2</td>
<td>5.6</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Loon Reef</td>
<td>07/22/1992</td>
<td>---</td>
<td>---</td>
<td>5.2</td>
<td>5.6</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Loon Reef</td>
<td>09/02/1992</td>
<td>---</td>
<td>---</td>
<td>5.2</td>
<td>5.5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Loon Reef</td>
<td>09/08/1992</td>
<td>---</td>
<td>---</td>
<td>5.3</td>
<td>5.6</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Loon Reef</td>
<td>09/17/1992</td>
<td>---</td>
<td>---</td>
<td>5.3</td>
<td>5.6</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

<< End of 1992 listing, 144 records >>
The Squam Lakes Data on file as of 01/04/1993

Lakes Lay Monitoring Program, U.N.H.

[Data Monitor Lay]

Little Squam Lake, NH
-- subset of trophic indicators, all sites, 1992

1992 SUMMARY
Average transparency: 7.3 (1992: 26 values; 5.7 - 8.4 range)
Average chlorophyll: 2.2 (1992: 26 values; 1.2 - 4.9 range)
Average color, 440: 22.3 (1992: 24 values; 6.9 - 43.0 range)

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Transparence (m)</th>
<th>Chl a (ppb)</th>
<th>Total Phos (ppb)</th>
<th>Alk. (gray) ph 5.1</th>
<th>Alk. (pink) ph 4.6</th>
<th>Color Pt-Co units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 West</td>
<td>06/18/1992</td>
<td>6.6</td>
<td>1.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>35.2</td>
</tr>
<tr>
<td>1 West</td>
<td>06/28/1992</td>
<td>6.8</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>24.1</td>
</tr>
<tr>
<td>1 West</td>
<td>07/06/1992</td>
<td>6.3</td>
<td>2.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>27.5</td>
</tr>
<tr>
<td>1 West</td>
<td>07/11/1992</td>
<td>6.1</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>24.1</td>
</tr>
<tr>
<td>1 West</td>
<td>07/18/1992</td>
<td>7.4</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>9.4</td>
</tr>
<tr>
<td>1 West</td>
<td>07/26/1992</td>
<td>7.0</td>
<td>1.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>6.9</td>
</tr>
<tr>
<td>1 West</td>
<td>08/02/1992</td>
<td>7.4</td>
<td>1.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>14.6</td>
</tr>
<tr>
<td>1 West</td>
<td>08/07/1992</td>
<td>7.5</td>
<td>1.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>19.8</td>
</tr>
<tr>
<td>1 West</td>
<td>08/17/1992</td>
<td>7.3</td>
<td>4.9</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>12.0</td>
</tr>
<tr>
<td>1 West</td>
<td>08/21/1992</td>
<td>8.4</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>15.5</td>
</tr>
<tr>
<td>1 West</td>
<td>08/30/1992</td>
<td>8.1</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>17.2</td>
</tr>
<tr>
<td>1 West</td>
<td>09/06/1992</td>
<td>8.2</td>
<td>3.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>20.5</td>
</tr>
<tr>
<td>1 West</td>
<td>09/11/1992</td>
<td>8.2</td>
<td>3.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1B</td>
<td>06/18/1992</td>
<td>6.5</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>28.3</td>
</tr>
<tr>
<td>1B</td>
<td>06/28/1992</td>
<td>6.3</td>
<td>2.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>43.0</td>
</tr>
<tr>
<td>1B</td>
<td>07/06/1992</td>
<td>6.3</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>38.7</td>
</tr>
<tr>
<td>1B</td>
<td>07/11/1992</td>
<td>5.7</td>
<td>1.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>31.8</td>
</tr>
<tr>
<td>1B</td>
<td>07/18/1992</td>
<td>7.8</td>
<td>1.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>30.9</td>
</tr>
<tr>
<td>1B</td>
<td>07/26/1992</td>
<td>6.0</td>
<td>1.7</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>12.0</td>
</tr>
<tr>
<td>1B</td>
<td>08/02/1992</td>
<td>7.5</td>
<td>2.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>17.2</td>
</tr>
<tr>
<td>1B</td>
<td>08/07/1992</td>
<td>7.8</td>
<td>1.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>15.5</td>
</tr>
<tr>
<td>1B</td>
<td>08/17/1992</td>
<td>7.8</td>
<td>3.9</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>18.9</td>
</tr>
<tr>
<td>1B</td>
<td>08/21/1992</td>
<td>8.3</td>
<td>2.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>18.9</td>
</tr>
<tr>
<td>1B</td>
<td>08/30/1992</td>
<td>8.1</td>
<td>3.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>14.6</td>
</tr>
<tr>
<td>1B</td>
<td>09/06/1992</td>
<td>8.1</td>
<td>3.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>37.8</td>
</tr>
<tr>
<td>1B</td>
<td>09/11/1992</td>
<td>7.8</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

<< End of 1992 listing, 26 records >>
TYPICAL TEMPERATURE CONDITIONS: SUMMER NEW HAMPSHIRE - DEEP LAKE

DEPT (meters)

0 2 4 6 8 10 12 14 16

EPILIMNION
UPPER - WARM WATER LAYER - WIND MIXED

METALIMNION
SHARP DROP IN TEMPERATURE (THERMOCLINE)

HYPOLIMNION
BOTTOM COLD WATER LAYER
APPENDIX C

GLOSSARY OF LIMNOLOGICAL TERMS

Aerobe- Organisms requiring oxygen for life. All animals, most algae and some bacteria require oxygen for respiration.

Algae- See phytoplankton.

Alkalinity- Total concentration of bicarbonate and hydroxide ions (in most lakes).

Anaerobe- Organisms not requiring oxygen for life. Some algae and many bacteria are able to respire or ferment without using oxygen.

Anoxic- A system lacking oxygen, therefore incapable of supporting the most common kind of biological respiration, or of supporting oxygen-demanding chemical reactions. The deeper waters of a lake may become anoxic if there are many organisms depleting oxygen via respiration, and there is little or no replenishment of oxygen from photosynthesis or from the atmosphere.

Benthic- Referring to the bottom sediments.

Bacterioplankton- Bacteria adapted to the "open water" or "planktonic" zone of lakes, adapted for many specialized habitats and include groups that can use the sun's energy (phytoplankton), some that can use the energy locked in sulfur or iron, and others that gain energy by decomposing dead material.

Bicarbonate- The most important ion (chemical) involved in the buffering system of New Hampshire lakes.

Buffering- The capacity of lakewater to absorb acid with a minimal change in the pH. In New Hampshire the chemical responsible for buffering is the bicarbonate ion. (See pH.)

Chloride- One of the components of salts dissolved in lakewater. Generally the most abundant ion in New Hampshire lakewater, it may be used as an indicator of raw sewage or of road salt.

Chlorophyll a- The main green pigment in plants. The concentration of chlorophyll a in lakewater is often used as an indicator of algal abundance.

Circulation- The period during spring and fall when the combination of low water temperature and wind cause the water column to mix freely over its entire depth.

Density- The weight per volume of a substance. The more dense an object, the heavier it feels. Low-density liquids will float on higher-density liquids.

Dimictic- The thermal pattern of lakes where the lake circulates, or mixes, twice a year. Other patterns such as polymictic (many periods of circulation per year) are uncommon in New Hampshire. (See also meromictic and holomictic).
Dystrophy- The lake trophic state in which the lakewater is highly stained with humic acids (reddish brown or yellow stain) and has low productivity. Chlorophyll a concentration may be low or high.

Epilimnion- The uppermost layer of water during periods of thermal stratification. (See lake diagram).

Eutrophy- The lake trophic state in which algal production is high. Associated with eutrophy is low Secchi disk depth, high chlorophyll a, and low total phosphorus. From an esthetic viewpoint these lakes are "bad" because water clarity is low, aquatic plants are often found in abundance, and cold-water fish such as trout and salmon are usually not present. A good aspect of eutrophic lakes is their high productivity in terms of warm-water fish such as bass, pickerel, and perch.

Free CO2- Carbon dioxide that is not combined chemically with lake water or any other substances. It is produced by respiration, and is used by plants and bacteria for photosynthesis.

Holomixis- The condition where the entire lake is free to circulate during periods of overturn. (See meromixis.)

Humic Acids- Dissolved organic compounds released from decomposition of plant leaves and stems. Humic acids are red, brown, or yellow in color and are present in nearly all lakes in New Hampshire. Humic acids are consumed only by fungi, and thus are relatively resistant to biological decomposition.

Hydrogen Ion- The "acid" ion, present in small amounts even in distilled water, but contributed to rain-water by atmospheric processes, to ground-water by soils, and to lakewater by biological organisms and sediments. The active component of "acid rain". See also "pH" the symbolic value inversely and exponentially related to the hydrogen ion.

Hypolimnion- The deepest layer of lakewater during periods of thermal stratification. (See lake diagram)

Lake- Any "inland" body of relatively "standing" water. Includes many synonyms such as ponds, tarns, lochs, billabongs, bogs, marshes, etc.

Lake Morphology- The shape and size of a lake and its basin.

Littoral- The area of a lake shallow enough for submerged aquatic plants to grow.

Meromixis- The condition where the entire lake fails to circulate to its deepest points; caused by a high concentration of salt in the deeper waters, and by peculiar landscapes (small deep lakes surrounded by hills and/or forests. (Contrast holomixis.)

Mesotrophy- The lake trophic state intermediate between oligotrophy and eutrophy. Algal production is moderate, and chlorophyll a, Secchi disk depth, and total phosphorus are also moderate. These lakes are esthetically "fair" but not as good as oligotrophic lakes.

Metalimnion- The "middle" layer of the lake during periods of summer thermal stratification. Usually defined as the region where the water temperature changes at least
one degree per meter depth. Also called the thermocline.

Mixis - Periods of lakewater mixing or circulation.

Mixotrophy - The lake condition where the water is highly stained with humic acids, but algal production and chlorophyll a values are also high.

Oligotrophy - The lake trophic state where algal production is low, Secchi disk depth is deep, and chlorophyll a and total phosphorus are low. Esthetically these lakes are the "best" because they are clear and have a minimum of algae and aquatic plants. Deep oligotrophic lakes can usually support cold-water fish such as lake trout and land-locked salmon.

Overturn - See circulation or mixis

pH - A measure of the hydrogen ion concentration of a liquid. For every decrease of 1 pH unit, the hydrogen ion concentration increases 10 times. Symbolically, the pH value is the "negative logarithm" of the hydrogen ion concentration. For example, a pH of 5 represents a hydrogen ion concentration of 10^-5 molar. [Please thank the chemists for this lovely symbolism — and ask them to explain it in lay terms!] In any event, the higher the pH value, the lower the hydrogen ion concentration. The range is 0 to 14, with 7 being neutral 1 denoting high acid condition and 14 denoting very basic condition.

Photosynthesis - The process by which plants convert the inorganic substances carbon dioxide and water into organic glucose (sugar) and oxygen using sunlight as the energy source. Glucose is an energy source for growth, reproduction, and maintenance of almost all life forms.

Phytoplankton - Microscopic algae which are suspended in the "open water" zone of lakes and ponds. A major source of food for zooplankton. Common examples include: diatoms, euglenoids, dinoflagellates, and many others. Usually included are the blue-green bacteria.

Parts per million - Also known as "ppm". This is a method of expressing the amount of one substance (solute) dissolved in another (solvent). For example, a solution with 10 ppm of oxygen has 10 pounds of oxygen for every 999,990 pounds (500 tons) of water. Domestic sewage usually contains from 2 to 10 ppm phosphorus.

Parts per billion - Also known as "ppb". This is only 1/1000 of ppm, therefore much less concentrated. As little as 1 ppb of phosphorus will sustain growth of algae. As little as 10 ppb phosphorus will cause algal blooms! Think of the ratio as 1 milligram (1/28000 of an ounce) of phosphorus in 25 barrels of water (55 gallon drums)! Or, 1 gallon of septic waste diluted into 10,000 gallons of lakewater. It adds up fast!

Plankton - Community of microorganisms that live suspended in the water column, not attached to the bottom sediments or aquatic plants. See also "bacterioplankton" (bacteria), "phytoplankton" (algae) and "zooplankton" (mocrocrustaceans and rotifers).

Saturated - When a solute (such as water) has dissolved all of a substance that it can. For example, if you add table salt to water, a point is reached where any additional salt fails to dissolve. The water is then said to be saturated with table salt. In lakewater,
gaseous oxygen can dissolve, but eventually the water becomes saturated with oxygen if exposed sufficiently long to the atmosphere or another source of oxygen.

Specific Conductivity - A measure of the amount of salt present in lakewater. As the salt concentration increases, so does the specific conductivity (electrical conductivity).

Stratum - A layer or "blanket". Can be used to refer to one of the major layers of lakewater such as the epilimnion, or to any layers of organisms or chemicals that may be present in a lake.

Thermal Stratification - The process by which layers are built up in the lake due to heating by the sun and partial mixing by wind.

Thermocline - Region of temperature change. (See metalimnion.)

Total Phosphorus - A measure of the concentration of phosphorus in lakewater. Includes both free forms (dissolved), and chemically combined form (as in living tissue, or in dead but suspended organisms).

Trophic Status - A classification system placing lakes into similar groups according to their amount of algal production. (See Oligotrophy, Mesotrophy, Eutrophy, Mixotrophy, and Dystrophy for definitions of the major categories)

Z - A symbol used by limnologists as an abbreviation for depth.

Zooplankton - Microscopic animals in the planktonic community. Some are called "water fleas", but most are known by their scientific names. Scientific names include: *Daphnia*, *Cyclops*, *Bosmina*, and *Kellicottia*.