SILVER LAKE (MADISON) 1992
LAKES LAY MONITORING PROGRAM

by
Jeffrey A. Schloss
Robert K. Craycraft

edited by
A.L. Baker and J.F. Haney

NEW HAMPSHIRE LAKES LAY MONITORING PROGRAM

NH LLMP

FRESHWATER BIOLOGY GROUP
University of New Hampshire
Durham

UNIVERSITY OF NEW HAMPSHIRE
COOPERATIVE EXTENSION

To obtain more information about the NH Lakes Lay Monitoring Program (NH LLMP) contact the Coordinator (J.Schloss) at (603) 862-3848
Dr. Baker at 862-3845 or Dr. Haney at 862-2106
PREFACE

This report contains the findings of a water quality survey of Silver Lake, Madison, New Hampshire, conducted in the summer of 1992 by the Freshwater Biology Group (FBG) of the University of New Hampshire and the Silver Lake Association.

The report is written with the concerned lake resident in mind and contains a brief, non-technical summary of 1992 results as well as more detailed "Introduction" and "Discussion" sections. Graphic display of data is included, in addition to listings of data in appendices, to aid visual perspective.
TABLE OF CONTENTS

PREFACE .. 1
TABLE OF CONTENTS .. 3
ACKNOWLEDGEMENTS .. 5
SILVER LAKE (MADISON) - 1992 NON-TECHNICAL SUMMARY 7
COMMENTS AND RECOMMENDATIONS ... 11
INTRODUCTION .. 13
 The New Hampshire Lakes Lay Monitoring Program 13
 The General Scenario - 1992 ... 14
 Importance of Long-term Monitoring ... 15
 Purpose and Scope of This Study ... 17
DISCUSSION OF LAKE MONITORING MEASUREMENTS 19
 Thermal Stratification in the Deep Water Sites 19
 Water Transparency ... 19
 Chlorophyll a .. 20
 Dissolved Color .. 21
 Total Phosphorus .. 22
 pH * ... 23
 Alkalinity .. 24
 Specific Conductivity * .. 25
 Dissolved Oxygen and Free Carbon Dioxide * 25
 Underwater Light * .. 27
 Indicator Bacteria * ... 27
 Phytoplankton * ... 28
 Zooplankton * ... 29
 Fish Condition ... 30
SPECIAL TOPIC - ZEBRA MUSSELS .. 31
 What are Zebra Mussels? ... 32
 What do Zebra Mussels do? ... 32
 What can you do? ... 33
 How do you recognize one? .. 34
 Where can you get more information? 34
REFERENCES .. 35
REPORT FIGURES ... 37
DATA .. A-1
LAKE DIAGRAMS .. B-1
GLOSSARY .. C-1
ACKNOWLEDGEMENTS

This was the tenth year of participation in the Lakes Lay Monitoring Program (LLMP) for the Silver Lake monitors. The Lay Monitors were Lawrence Simmelink, Barbara and Carl Beck, Robert Benford, Robert Newton, Priscilla Furse, Frannie Kennett, George and Sally Cullington and Glad Paret. The coordinator and liaison to the Freshwater Biology Group (FBG) was again Lawrence Simmelink. The FBG congratulates the Lay Monitors on the quality of their work, and the time and effort put forth. We encourage other interested members of the Silver Lake Association to continue monitoring during the 1993 season. Funding for the monitoring was provided by the Silver Lake Association.

The Freshwater Biology Group is a not-for-profit research program co-supervised by Dr. Alan Baker and Dr. James Haney and coordinated by Jeffrey Schloss. Members of the FBG summer field team included Jeffrey Schloss, Robert Craycraft, Gregg Vereb, Gregg Stevens, Sean Proll, Matt Denneen and Robert Banks. Other FBG staff assisting in the fall were: Eric Betke, Amanda Fifield, Jessica Chappell and Philip Lucason.

The FBG acknowledges the University of New Hampshire Cooperative Extension for funding and furnishing office, laboratory and storage space. The College of Life Sciences and Agriculture provided accounting support and the UNH Office of Computer Services provided computer time and data storage allocations.

Participating groups in the LLMP include: The New Hampshire Audubon Society, Derry Conservation Commission, Dublin Garden Club, Nashua Regional Planning Commission, Center Harbor Bay Conservation Commission, Governor's Island Club Inc., Little Island Pond Rod and Gun Club, Walker's Pond Conservation Society, United Associations of Alton, the Pemaquid Watershed Study Group, the associations of Baboosic Lake, Beaver Lake, Berry Bay, Big Island Pond, Bow Lake Camp Owners, Chesham Pond, Lake Chocorua, Cunningham Pond, Crystal Lake, Dublin Lake, Glines Island,
Goose Pond, Great East Lake, Lake Kanasatka Watershed, Langdon Cove, Long Island Landowners, Lovell Lake, Marchs Pond, Mascoma Lake, Mendum’s Pond, Meredith Bay Rotary Club, Merrymeeting Lake, Milton Ponds Lake Lay Monitoring, Mirror Lake (Tuftonboro), Moultonbouro Bay, Lake Winnipesaukee, Naticook Lake, Newfound Lake, Nippo Lake, Peaporidge Pond, Perkins Pond, Pleasant Lake, Silver Lake (Hollis), Silver Lake (Harrisville), Silver Lake (Madison), Silver Lake (Tilton), Squam Lakes, Lake Sunapee, Sunset Lake, Lake Waukewan, Lake Winona, Wentworth Lake and the towns of Alton, Amherst, Enfield, Hollis, Madison, Merrimack, Strafford and Wolfeboro.
SILVER LAKE (MADISON)
1992 NON-TECHNICAL SUMMARY

Monitoring was undertaken at Silver Lake by the volunteer monitors from June 17 to September 21 while an in-depth analysis of the lake was conducted on August 13 by the FBG.

1) Water transparency at Silver Lake was high, the sign of a clear and unproductive lake. The secchi disk was visible as far down as 9.5 meters (30.9 feet) and the transparency averages were 7.3 meters at Site 1 South, 7.5 meters at Site 2 Deep, 7.3 meters at Site 3 Center, 5.6 meters at Site 4 East (at which time the secchi disk rested on the lake bottom), 6.7 meters at Site 5 North and 6.7 meters at Site 7 North Island (formerly called Site 7 Cooks Island). This indicates the deepwater sites on the lake are relatively low in dissolved color and suspended matter such as algae and particulates. Transparency averages in 1992 were higher (i.e. the lake is clearer) than the averages recorded over the past three years, with new single date and seasonal average water clarity highs of 8.1 meters and 6.7 meters, respectively, at Site 7 North Island.

2) Chlorophyll a concentrations (a measure of microscopic plant abundance) for the surface waters of Silver Lake were low. Concentrations in the mixed layer of water averaged 1.2 milligrams per cubic meter (1.2 mg m⁻³, equivalent to about 1.2 parts chlorophyll per billion parts water) at Site 1, 1.1 mg m⁻³ at Site 2, 1.0 mg m⁻³ at Site 3, 1.2 mg m⁻³ at Site 4, 1.3 mg m⁻³ at Site 5 and 1.4 mg m⁻³ at Site 7. Generally, concentrations below 3 mg m⁻³ are common to less productive, clear lakes and values above 7 mg m⁻³ are common in productive lakes. Average lake chlorophyll a levels at Sites 1 South, 2 Deep, 3 Center, 5 North and 7 North Island were similar to those recorded in 1991 while average chlorophyll a levels decreased at Site 4 East.
3) Dissolved lakewater color levels for Silver Lake were moderate, but slightly less than the average of 26 platinate color units (ptu) for LLMP program lakes. Small increases in water color from the natural breakdown of plant materials in and around a lake are not considered to be detrimental to water quality. However, increased color can lower water transparency, and hence, change the public perception of water quality. Large amounts of dissolved color may occur naturally but also occur during deforestation and development within the watershed. High color levels can actually mask the ability of the secchi disk transparency to predict chlorophyll levels.

4) Total phosphorus (nutrient) levels collected by the Lay Monitors and FBG were low in the surface and bottom waters. Phosphorous samples collected at the six lake sampling stations averaged 2.1 ppb with a range of 1.0 to 6.2 ppb. Tributary samples collected at the Forest and Cooks Inlets (September 14, 1992) were also low with a concentration of 1.3 ppb phosphorous at both stations. All phosphorous concentrations were well below the level of 15 ppb commonly thought of as the boundary between less productive and more productive lakes.

5) The pH of the surface waters of the lake, measured by the FBG and volunteer monitors, remains within the optimum range for most aquatic organisms. The alkalinity of the lake remained low, about 2.5 units lower than the average alkalinity of 6.0 units for LLMP program lakes and decreased slightly from readings taken by the volunteer monitors between 1988 and 1991. This may be due to the increase in snow pack and the wet spring of this past year. The pH and alkalinity data indicate that Silver Lake seems to have a low, but sufficient, buffering capacity at this time to resist fluctuations in pH due to acid loadings. However, the current years alkalinity levels are approaching the critical level of two alkalinity units, which is considered the point at which the pH will begin to fluctuate.
greatly. Further monitoring shall discern whether the alkalinity levels will rebound to their previous levels or continue to decline.

6) The specific conductivity of the deepwater sites on Silver Lake was very low, with a range of 19.5 to 36.4 micro-Siemens. High conductivity values can indicate the presence of septic leachate or deicing salt runoff. Note: the highest conductivity readings were recorded at Site 7 North Island and increased towards the lake bottom.

7) In-depth analysis at the deep sites disclosed the typical temperature stratification patterns for northern temperate lakes. With the depth of the upper mixed layer of water extending to 7.0 meters. Oxygen content of the bottom waters remained above 5 milligrams per liter (the minimum concentration required for successful reproduction and growth of most coldwater fish) throughout the water column for Site 2 Deep. Dissolved oxygen levels at Site 5 North dropped below the level of 5 mg/l towards the lake bottom (15.5 meters) which was most likely the result of the probe resting in the sediments. Otherwise, the oxygen readings remained within the tolerable range for most coldwater fish. However, the oxygen content of Site 7 North Island remained above 5 milligrams per liter only to about 8.5 meters. Low oxygen concentrations in the bottom waters suggests the accumulation of organic matter from algal and plant productivity as well as watershed runoff.

8) For all measurements considered and averaged for the season, Silver Lake would be classified as having low productivity, a clear, oligotrophic lake. However, alkalinity levels are approaching a critical level and should continue to be monitored closely.

9) Comparisons between Lay Monitor and FBG data indicate that the volunteer monitors of Silver Lake are doing an excellent job of measuring water quality at all
stations. Alkalinity results collected by the FBG are slightly lower than those recorded by the Silver Lake monitors.
COMMENTS AND RECOMMENDATIONS

1) We recommend that each association, including the Silver Lake Association, continue to develop its data base on lake water quality through continuation of the long-term monitoring program. The data base will provide information on the short and long-term cyclic variability that occurs in the lake and eventually will enable more reliable predictions of water quality trends.

2) We recommend lake water testing beginning in May, if possible, to monitor the lakes reaction to the nutrient and acid loadings that typically occur after ice-melt and during heavy spring rains. Phosphorous samples should be collected from both deep and tributary sampling stations. Emphasis should also be placed on alkalinity and chlorophyll sampling, as the spring runoff can have a profound effect on these parameters (i.e. lower alkalinity levels, increased algal growth).

3) Silver Lake remained a clear and unproductive lake in 1992. However, the northern sites continue to exhibit higher levels of productivity than the southern region of the lake; particularly Site 7 North Island. We recommend the collection of deepwater (hypolimnetic) phosphorous samples at 7 North Island (using the meyer bottle), late in the season, to assess the degree of internal nutrient loading.
INTRODUCTION

The New Hampshire Lakes Lay Monitoring Program

In this fifteenth year of operation, the NH Lakes Lay Monitoring Program has grown from a university class project on Chocorua Lake and pilot study on the Squam Lakes to a comprehensive state-wide program with over 500 volunteer monitors and more than 100 lakes participating. Originally developed to establish a data-base for determining long-term trends of lake water quality for science and management, the program has expanded by taking advantage of the many resources that citizen monitors can provide. The NH LLMP has an international reputation as a successful cooperative monitoring, education and research program. Current projects include: use of volunteer generated data for non-point pollution studies using high tech analysis system (Geographic Information Systems and Satellite Remote Sensing), intensive watershed monitoring for the development of lake nutrient budgets, and investigations of water quality and indicator organisms (food web analysis, fish condition, and stream invertebrates). The key ingredients responsible for the success of the program include innovative funding and cost reduction, assurance of credible data, practical sampling protocols and, most importantly, the interest and motivation of our volunteer monitors.

The 1992 sampling season was another exciting year for the New Hampshire Lakes Lay Monitoring Program. National recognition for the high quality of work by you, the volunteer monitors, continued with awards, requests for program information and invitations to speak at national conferences. We continue to be listed as a model citizen monitoring program on the Environmental Success Index of Renew America and on the Environmental Network Clearinghouse. To date, the approach and methods of the NH LLMP have been adopted by new or existing programs in fifteen states and nine countries!
Our Fish Condition Program intensive lake survey results have been tabulated, reports went to NH Fish & Game (our sponsor) and the results for individual lakes are forthcoming. Our fish study team is now focusing on the Newfound Lake fishery to determine the effects and results of alewife introduction.

In 1992 volunteers performed over 3000 measurements on lakes across the state as well as provided over 2000 samples that were analyzed in our UNH Freshwater Biology Group analytical lab. To date, data has been collected on over 100 lakes at over 440 sites by almost 600 volunteers who made over 10,492 lake sampling trips!

The General Scenario- 1992

Low snow pack (less water melting through the watershed at springtime) was again a factor in reduced spring runoff although we did see a handful of spring shower events early in the season. While mid and late summer conditions were more cloudy than typical, rainfall was again light. Thus, while not as dry as the summer of 1991, the 1992 summer season had below average precipitation. The general result of this was continued optimum water quality conditions for most lakes.

Lakes were clearer due to a combination of factors that could include lower dissolved color washed in from surrounding wetland areas, lower algae growth (measured as chlorophyll a) in the surface waters and lower suspended sediment levels. Dissolved color is not indicative of a water quality problems (although large increases in dissolved color sometime follow large land clearing operations) but in some of our more pristine program lakes it nevertheless has a large effect on water clarity changes.

With decreased nutrient runoff in the spring, and a lower water table situation translating into less of a chance of septic system failure, algae and some aquatic plant growth would be minimized.
As with color and nutrients the dryer season brought less suspended sediment load to many of our streams and lakes. If increased clarity was not the result of decreased color or chlorophyll levels then it was due to decreased suspended sediment by default. To find out how these water quality indicators inter-relate for a particular lake site compare the secchi disk, chlorophyll and color graphs enclosed in this report. Note whether changes in clarity (secchi disk depth) correspond to chlorophyll or color concentration changes or whether it is a combination of both. If neither seem to exhibit a consistent effect then sediment plays an important role in your lake's clarity.

A few NH LLMP lakes were actually worse off in 1992. These lakes included those more productive lakes in which a good deal of nutrients come internally from sediment release. Lakes with significant nutrient input from septic systems or shoreline fertilization and watering would also have a bad year under the 1992 conditions. Other lakes that fared worse this year were seepage lakes, shallow lakes that rely on groundwater (springs) in-flow and out-flow for replenishment and cleansing. With a low water table, these lakes became great "growth chambers" for algae.

Importance of Long-term Monitoring

A major goal of a monitoring program is to identify any short or long-term changes in the water quality of the lake. Of major concern is the detection of cultural eutrophication: increases in the productivity of the lake, the amount of algae and plant growth, due to the addition of nutrients from human activities. Changes in the natural buffering capacity of the lakes in the program is also a topic of great concern, as New Hampshire receives large amounts of acid precipitation, yet most of our lakes contain little mineral content to neutralize this type of pollution.

For almost a decade and a half, data collected weekly from lakes participating in the New Hampshire Lakes Lay Monitoring Program have indicated there is quite a
variation in water quality indicators through the open water season on the majority of lakes. Short-term differences may be due to variations in weather, lake use, or other chance events. Monthly sampling of a lake during a single summer provides some useful information, but there is a greater chance that important short-term events such as algal blooms or the lake response to storm run-off will be missed. These short-term fluctuations may be unrelated to the actual long-term trend of a lake or they may be indicative of the changing status or "health" of a lake.

To determine if a change in water quality is occurring, a lake must be sampled on a frequent basis over a substantial amount of time. A poorly designed sampling program may even mislead the investigator away from the actual trend: Consider the hypothetical lake in Figure 1. Sampling only once a year during August from 1982 to 1986 would produce a plot (Fig. 2) suggesting a decrease in eutrophication. The actual long-term trend of the lake, increasing eutrophy, can only be clearly discerned by sampling additional times a year for a ten year period (Fig. 1). Frequent monitoring carried out over the course of many summers can provide the information required to distinguish between short-term fluctuation ("noise") and long-term trends ("signal"). To that end, the lake must establish a long-term data base.

The number of seasons it takes to distinguish between the noise and the signal is not the same for each lake. Evaluation and interpretation of a long-term data base will indicate that the water quality of the lake has worsened, improved, or remained the same. In addition, different areas of a lake may show a different response. As more data is collected, prediction of current and future trends can be made. No matter what the outcome, this information is essential for the intelligent management of the lake.

There are also short-term uses for lay monitoring data. The examination of different stations in a lake can disclose the location of specific problems and corrective action can be
initiated to handle the situation before it becomes more serious. On a lighter note, some associations post their weekly data for use in determining the best depths for finding fish!

It takes a considerable amount of effort as well as a deep concern for one's lake to be a lay monitor in the NH Lakes Lay Monitoring Program. Many times a monitor has to brave inclement weather or heavy boat traffic to collect samples. Sometimes it even may seem that one week's data is just the same as the next. Yet every sampling provides important information on the variability of the lake.

We are pleased with the interest and commitment of our Lay Monitors and are proud that their work is what makes the NH LLMP the most extensive, and we believe, the best volunteer program of its kind.

Purpose and Scope of This Study

This was the tenth year that monitoring of Silver Lake was undertaken by the Freshwater Biology Group and the Silver Lake Association. The program of sampling was designed to continue adding data to the long-term data base established. Sampling emphasis was placed on six open water deep stations while additional tributary samples were collected late in the season.

The primary purpose of this report is to discuss results of the 1992 monitoring with emphasis on current conditions of Silver Lake including the extent of eutrophication and the lake's susceptibility to increasing acid precipitation. This information is part of a large data base of historical and more recent data compiled and entered onto computer files for New Hampshire lakes that include New Hampshire Fish and Game surveys of the 1930's, the surveys by the New Hampshire Water Supply and Pollution Control Commission and the FBG surveys. Care must be taken when comparing current results with early studies. Many complications arise due to methodological differences of the various testing facilities and technological improvements in testing.
DISCUSSION OF LAKE MONITORING MEASUREMENTS

The section below details the important concepts involved for the various testing procedures used in the New Hampshire Lakes Lay Monitoring Program. Where appropriate, summary statistics of 1992 results from all participating lakes are included. Certain tests or sampling performed at the time of the optional Freshwater Biology Group field trip are indicated by an asterisk (*).

Thermal Stratification in the Deep Water Sites

Lakes in New Hampshire display distinct patterns of temperature stratification, that develop as the summer months progress, where a layer of warmer water (the epilimnion) overlies a deeper layer of cold water (hypolimnion). The layer that separates the two regions characterized by a sharp drop in temperature with depth is called the thermocline or metalimnion. Some shallow lakes may be continually mixed by wind action and will never stratify. Other lakes may only contain a developed epilimnion and metalimnion.

Silver Lake became stratified into three distinct layers, discussed above, as the season progressed.

Water Transparency

Secchi Disk depth is a measure of the water transparency. The deeper the depth of secchi disk disappearance, the more transparent the lake water; light penetrates deeper if there is little dissolved and/or particulate matter (which includes both living and non-living particles) to absorb and scatter it.

In the shallow areas of many lakes, the secchi disk will hit bottom before it is able to disappear from view (what is referred to as a "Bottom Out" condition). Thus, Secchi disk measurements are generally taken over the deepest sites of a lake. Transparency values of greater than 4 meters are typical of clear, less productive lakes. Values less than 2.5
meters are generally an indication of a very productive lake. In 1992 the average transparency for lakes participating in the NH LLMP was 5.6 meters with a range of 1.8 to 12.5 meters.

Secchi disk readings collected at Silver Lake, by the volunteer monitors, were high during most of the 1992 sampling season and averaged 7.3 meters (range: 6.2 to 8.7 meters) at Site 1 South, 7.5 meters (range: 6.2 to 9.5 meters) at Site 2 Deep, 7.3 meters (range: 6.2 to 8.5 meters) at Site 3 Center, 5.6 meters (at which time the secchi disk rested on the lake bottom) at Site 4 East, 6.7 meters (range: 5.5 to 9.5 meters) at Site 5 North and 6.7 meters (range 4.9 to 8.1 meters) at Site 7 North Island. The water clarity in Silver Lake is typical of unproductive New Hampshire lakes and reflects the low level of algal growth in the lake.

Chlorophyll a

The chlorophyll a concentration is a measurement of the standing crop of phytoplankton and is often used to classify lakes into categories of productivity called trophic states. Eutrophic lakes are highly productive with large concentrations of algae and aquatic plants due to nutrient enrichment. Characteristics include accumulated organic matter in the lake basin and lower dissolved oxygen in the bottom waters. Summer chlorophyll a concentrations average above 7 mg m\(^{-3}\) (7 milligrams per cubic meter; 7 parts per billion). Oligotrophic lakes have low productivity and low nutrient levels and average summer chlorophyll a concentrations are generally less than 3 mg m\(^{-3}\). These lakes generally have cleaner bottoms and high dissolved oxygen levels throughout. Mesotrophic lakes are intermediate in productivity with concentrations of chlorophyll a generally between 3 mg m\(^{-3}\) and 7 mg m\(^{-3}\). In 1992 the average chlorophyll for lakes participating in the NH LLMP was 2.8 mg m\(^{-3}\) with a range of 0.4 to 18.5 mg m\(^{-3}\).
Surface water chlorophyll a levels in Silver Lake were very low during most of the 1992 sampling season and averaged 1.2 mg m$^{-3}$ (range: 0.6 to 1.9 mg m$^{-3}$) at Site 1 South, 1.1 mg m$^{-3}$ (range: 0.6 to 1.9 mg m$^{-3}$) at Site 2 Deep, 1.0 mg m$^{-3}$ (range: 0.4 to 1.7 mg m$^{-3}$) at Site 3 Center, 1.2 mg m$^{-3}$ (range: 0.9 to 2.1 mg m$^{-3}$) at Site 4 East, 1.3 mg m$^{-3}$ (range: 0.4 to 1.8 mg m$^{-3}$) at Site 5 North and 1.4 mg m$^{-3}$ (range: 0.9 to 2.1 mg m$^{-3}$) at Site 7 North Island. A decrease in the seasonal average chlorophyll a concentrations over the past two seasons has corresponded to the atypically dry seasons over that period, reducing nutrient runoff into the lake and thus minimizing algal growth. With 1993 off to a wet start, relative to the past two year, we expect to see elevated algal levels during the 1993 sampling season.

Testing is sometimes done to check for metalimnetic algal populations, algae that layer out at the thermocline and generally go undetected if only epilimnetic (point or integrated) sampling is undertaken. Chlorophyll concentrations of a water sample collected in the thermocline is compared to the integrated epilimnetic sample. Greater chlorophyll levels of the point sample, in conjunction with microscopic examination of the samples (see Phytoplankton section below), confirm the presence of such a population of algae. These populations should be monitored as they may be an indication of increased nutrient loading into the lake.

Mid-lake chlorophyll a samples, collected by the FBG, revealed no stratifying layer of algae on the August 13 sampling date. Future FBG sampling will continue to monitor this phenomenon, particularly in the northern region of the lake where a higher level of productivity exists.

Dissolved Color

The dissolved color of lakes is generally due to dissolved organic matter from humic substances, which are naturally-occurring polyphenolic compounds leached from
decayed vegetation. Highly colored or "stained" lakes have a "tea" color. Such substances generally do not threaten water quality except as they diminish sunlight penetration into deep waters. Increases in dissolved watercolor can be an indication of increased development within the watershed as many land clearing activities (construction, deforestation, and the resulting increased run-off) add additional organic material to lakes. Natural fluctuations of dissolved color occur when storm events increase drainage from wetlands areas within the watershed. As suspended sediment is a difficult and expensive test to undertake, both dissolved color and chlorophyll information is important when interpreting the secchi disk transparency.

Dissolved color is measured on a comparative scale that uses standard chloroplatinate dyes and is designated as a color unit or ptu. Lakes with color below 10 ptu are very clear, 10 to 20 ptu are slightly colored, 20 to 40 ptu are lightly tea colored, 40 to 80 ptu are tea colored and greater than 80 ptu indicates highly colored waters. Generally the majority of New Hampshire lakes have color between 20 to 30 ptu.

Total Phosphorus

Of the two "nutrients" most important to the growth of aquatic plants, nitrogen and phosphorus, it is generally observed that phosphorus is the more limiting to plant growth, and therefore the more important to monitor and control. Phosphorus is generally present in lower concentrations, and its sources arise primarily through human related activity in a watershed. Nitrogen can be fixed from the atmosphere by many bloom-forming blue-green bacteria, and thus it is difficult to control. The total phosphorus includes all dissolved phosphorus as well as phosphorus contained in or adhered to suspended particulates such as sediment and plankton. As little as 15 parts per billion of phosphorus in a lake can cause an algal bloom.
Generally, in the more pristine lakes, phosphorus values are higher after spring melt when the lake receives the majority of runoff from its surrounding watershed. The nutrient is used by the algae and plants which in turn die and sink to the lake bottom causing phosphorus to decrease as the summer progresses. Lakes with nutrient loading from human activities and sources (Agriculture, Sediment Erosion, Septic Systems, etc) will show greater concentrations of nutrients as the summer progresses or after major storm events. Circulation of nutrients from the bottom waters of more productive lakes in late fall can result in algal blooms.

Phosphorous samples collected in Silver Lake were low in both the upper mixed layer of water and near the lake bottom with a range of 1.0 to 6.2 ppb. Tributary samples collected by the FBG and volunteer monitors were also low and remained below the concentration of 15 ppb commonly thought of as the boundary between unproductive and moderately productive lakes.

pH

The pH is a way of expressing the acidic level of lake water, and is generally measured with an electrical probe sensitive to hydrogen ion activity. The pH scale has a range of 1 (very acidic) to 14 (very "basic" or alkaline) and is logarithmic (ie: changes in 1 pH unit reflect a ten times difference in hydrogen ion concentration). Most aquatic organisms tolerate a limited range of pH and most fish species require a pH of 5.5 or higher for successful growth and reproduction.

PH samples collected by the FBG and volunteers remained well within the range of tolerance for most aquatic organisms with a range of 6.3 to 6.7 units at the time of FBG sampling.
Alkalinity

Alkalinity is a measure of the buffering capacity of the lake water. The higher the value the more acid that can be neutralized. Typically lakes in New Hampshire have low alkalinitities due to the absence of carbonates and other natural buffering minerals in the bedrock and soils of lake watersheds.

Decreasing alkalinity over a period of a few years can have serious effects on the lake ecosystem. In a study on an experimental acidified lake in Canada by Schindler, gradual lowering of the pH from 6.8 to 5.0 in an 8-year period resulted in the disappearance of some aquatic species, an increase in nuisance species of algae and a decline in the condition and reproduction rate of fish. During the first year of Schindler’s study the pH remained unchanged while the alkalinity declined to 20 percent of the pre-treatment value. The decline in alkalinity was sufficient to trigger the disappearance of zooplankton species, which in turn caused a decline in the "condition" of fish species that fed on the zooplankton.

The analysis of alkalinity employed by the Freshwater Biology Group includes use of a dilute titrant allowing an order of magnitude greater sensitivity and precision than the standard method. Two endpoints are recorded during each analysis. The first endpoint (grey color of dye; pH endpoint of 5.1) approximates low level alkalinity values, while the second endpoint (pink dye color; pH endpoint of 4.6) approximates the alkalinity values recorded historically, such as NH Fish and Game data, with the methyl-orange endpoint method.

The average alkalinity of lakes throughout New Hampshire is low, approximately 9 mg per liter (calcium carbonate alkalinity), while the average alkalinity of the lakes studied by the Freshwater Biology Group in the NH LLMP is approximately 6.3 mg per liter. When alkalinity falls below 2 mg per liter the pH of waters can greatly fluctuate. Alkalinity levels are most critical in the spring when acid loadings from snowmelt and run-
off are high, and many aquatic species are in their early, and most susceptible, stages of their life cycle.

Alkalinity levels in Silver Lake are low (3.6 alkalinity units), and about 2.5 units less than the average of 6.0 units for LLMP lakes. However, the current alkalinity level is sufficient to buffer against variations in pH caused by acid precipitation and thus support most forms of aquatic life.

Specific Conductivity *

The specific conductance of a water sample indicates concentrations of dissolved salts. Leaking septic systems and deicing salt runoff from highways can cause high conductivity values. Fertilizers and other pollutants can also increase the conductivity of the water. Conductivity is measured in micromhos (the opposite of the measurement of resistance ohms) per centimeter, more commonly referred to as micro-Siemans.

Conductivity was low in Silver Lake, and ranged from 19.5 to 36.4 micro-Siemans on the August 13 sampling date. The highest conductivity readings near the lake bottom of Site 7 North Island and are indicative of accumulating ions (i.e. inorganic phosphorous, Chloride, etc.) at the site.

Dissolved Oxygen and Free Carbon Dioxide *

Oxygen is an essential component for the survival of aquatic life. Submergent plants and algae take in free carbon dioxide and create oxygen through photosynthesis by day. Respiration by both animals and plants uses up oxygen continually and creates carbon dioxide. Dissolved oxygen profiles determine the extent of declining oxygen concentrations in the lower waters. High carbon dioxide values are indicative of low oxygen conditions and accumulating organic matter. For both gases, as the temperature of the water decreases, more gas can be dissolved in the water.
The typical pattern of clear, unproductive lakes is a slight decline in hypolimnetic oxygen as the summer progresses. Oxygen in the lower waters is important for maintaining a fit, reproducing, cold water fishery. Trout and salmon generally require oxygen concentrations above 5 mg per liter (parts per million) in the cool deep waters. On the other hand, carp and catfish can survive very low oxygen conditions. Oxygen above the lake bottom is important in limiting the release of nutrients from the sediments and minimizing the collection of undecomposed organic matter.

Bacteria, fungi and other decomposers in the bottom waters break down organic matter originating from the watershed or generated by the lake. This process uses up oxygen and produces carbon dioxide. In lakes where organic matter accumulation is high, oxygen depletion can occur. In highly stratified eutrophic lakes the entire hypolimnion can remain unoxgenated or anaerobic until fall mixing occurs.

The oxygen peaks occurring at surface and mid-lake depths during the day are quite common in many lakes. These characteristic heterograde oxygen curves are the result of the large amounts of oxygen, the by-product of photosynthesis, collecting in regions of high algal concentrations. If the peak occurs in the thermocline of the lake, metalimnetic algal populations (discussed above) may be present.

The oxygen content of Silver Lake, measured on August 13, remained above the minimal requirements for most aquatic organisms down to the lake bottom of Sites 2 Deep and 5 North. However, the oxygen concentration of Site 7 North Island remained above 5 milligrams per liter only down to about 8.5 meters at the time of FBG sampling. The low dissolved oxygen and high carbon dioxide concentrations in the bottom waters of the latter site suggest a higher level of productivity than that seen in the former sites.
Underwater Light *

Underwater light available to photosynthetic organisms is measured with an underwater photometer which is much like the light meter of a camera (only waterproofed !). The photic zone of a lake is the volume of water capable of supporting photosynthesis. It is generally considered to be delineated by the water's surface and the level where light is reduced, by the absorption and scattering properties of the lake water, to one percent of the surface intensity. The one percent depth is sometimes termed the compensation depth. Knowledge of light penetration is important when considering lake productivity and in studies of submerged vegetation. Discontinuity (abrupt changes in the slope) of the profiles could be due to metalimnetic layering of algae or other particulates (discussed above). The underwater photometer allows the investigator to measure light at depths below the Secchi disk depth to supplement the transparency information.

Light profiles collected by the FBG on August 13 indicate the photic zone of Silver Lake extended to about 9.2 meters at the deep sampling station while light penetration was reduced at the northern sampling stations: 5 North (8.4 meters) and 7 North Island (7.1 meters). That is to say, aquatic plants can grow down to about 9.2 meters in the southern portion of the lake while aquatic plant growth is restricted to the upper 8.4 meters in the northern portion of the lake.

Indicator Bacteria *

Coliform bacteria in water indicate the possibility of fecal contamination. Although they are usually considered harmless to humans, they are much easier to test for than harmful pathogenic enteric bacteria (Salmonella, Shigella etc.) and viruses that may be present in fecal material. Total coliform includes all coliform bacteria which arise from the gut of animals or from vegetative materials. Fecal coliform are those specific organisms that inhabit the gut of warm blooded animals. Another indicator organism Fecal
streptococcus (sometimes referred to as enterococcus) also can be monitored. The ratio of fecal coliform to fecal strep may be useful in suggesting the type of animal source responsible for the contamination. Desirable levels for a Class A water body is less than 50 total coliform organisms per 100 milliliters. If the coliform level rises above 150 organisms per 100ml swimming should be prohibited.

Ducks and geese are often a common cause of high concentrations of coliform at specific lake sites. While waterfowl are important components to the natural and aesthetic qualities of lakes that we all enjoy, it is poor management practice to encourage these birds by feeding them. The lake and surrounding area provides enough healthy and natural food for the birds and feeding them stale, bread or crackers does nothing more than import additional nutrients into the lake and allows for increased plant growth. As birds also are a host to the parasite that causes "swimmers itch" waterfowl roosting areas offer a greater chance for infestation to occur. Thus while leaving offerings for our feathered friends is enticing, the results can prove to be detrimental to the lake system and to human health.

Phytoplankton

The planktonic community includes microbial organisms that represent diverse life forms, containing photosynthetic as well as non-photosynthetic types, and including bacteria, algae, crustaceans and insect larvae (the zooplankton are discussed below in a separate section). Because planktonic algae or "phytoplankton" tend to undergo rapid seasonal cycles on a time scale of days and weeks, the levels of populations found should be considered to be most representative of the time of collection and not necessarily of other times during the ice-free season, especially the early spring and late fall periods.

The composition and concentration of phytoplankton can be indicative of the trophic status of a lake. Seasonal patterns do occur and must be considered. For example diatoms, tend to be most abundant in April-June and October-November, in the surface or
epilimnetic layers of New Hampshire lakes. As the summer progresses, the dominant types might shift to green algae or golden algae. By late season Blue-green bacteria generally dominate. In nutrient rich lakes, nuisance green algae and/or bluegreen bacteria might dominate continually. After fall mixing diatoms might again be found to bloom.

The phytoplankton community of Silver Lake was low in density but exhibited a high diversity which is generally considered indicative of healthy lake conditions. The deep sites sampled (Sites 2 Deep, 5 North and 7 North Island) were dominated by the bluegreen algae on the August 13 sampling date. However, the genera present were not of the nuisance variety and remained below levels characteristic of more productive systems. The sub-dominant phytoplankton were, the golden algae which are common to unproductive New Hampshire lakes. Although all sampling stations indicate Silver Lake is an clear and unproductive lake, the phytoplankton community of the northern sampling stations (Sites 5 North and 7 North Island) indicate a higher productivity than the southern sampling station (Site 2 Deep).

Zooplankton *

There are three groups of zooplankton that are generally prevalent in lakes: the protozoa, rotifers and crustaceans. Most research has been devoted to the last two groups although protozoa may be found in substantial amounts. Of the rotifers and the crustaceans, time and budgetary constraints usually make it necessary to sample only the larger zooplankton (macrozooplankton; larger than 80 or 150 microns; 1 million microns make up a meter). Thus, zooplankton analysis is generally restricted only to the larger crustaceans. Crustacean zooplankton are very sensitive to pollutants and are commonly used to indicate the presence of toxic substances in water. The crustaceans can be divided into two groups, the cladocerans (which include the "water fleas") and the copepods.
Macrozooplankton are an important component in the lake system. The filter feeding of the herbivorous ("grazing") species may control the population size of selected species of phytoplankton. The larger zooplankton can be an important food source for juvenile and adult planktivorous fish. All zooplankton play a part in the recycling of nutrients within the lake.

As discussed above for phytoplankton, zooplankton undergo seasonal population cycles and the results discussed below are most representative of the collection dates and not necessarily of other times during the ice-free season, especially during the early spring and late fall.

The Macrozooplankton community of Silver Lake was dominated by the calanoid copepod, *Daphniomus*, at the time of FBG sampling while the cyclopid copepods were the sub-dominant form. Two species of the cladoceran, *Daphnia*, were present which can graze upon the phytoplankton population and keep algal growth in check. *Daphnia* also serve as an important food source for the planktivorous fish in the lake. The densities and types of animals present are representative of an unproductive New Hampshire lake.

Fish Condition

As with the plankton discussed above, the health of the fish species of a lake will be indicative of the overall water quality. Condition is determined by comparing the length of the fish to its weight. As would be expected, the heavier the fish for its length, the better its condition will be. By also examining a scale collected from the fish under a microscope, the approximate age and growth history can also be determined.
SPECIAL TOPIC - ZEBRA MUSSELS

Since first being introduced to North America in 1986, zebra mussels (Dreissena polymorpha) have dramatically altered the balance of freshwater systems and fisheries. These small water dwelling animals have also caused millions of dollars in expenses for industrial water users, drinking water facilities, commercial and recreational boaters, farmers, and other groups and organizations in Canada and the Great Lakes region.

The range occupied by these unwelcome visitors has expanded and continues to grow rapidly. In North America, sightings have been recorded as far north as the Saint Lawrence River near Quebec, as far east as the lower portion of the Hudson River, as far south as the Mississippi River near Vicksburg, and as far west as the Arkansas River in Oklahoma.

Although no confirmed zebra mussel sightings have been recorded in New England waters to date, residents and boaters are being encouraged to arm themselves with knowledge about the natural history and geographic spread of the mussels. Interstate boaters and anglers, in particular, should become familiar with boating and fishing practices that decrease the likelihood that zebra mussels will be transferred from an infested water body to an uninfested one.

The infestation risk factor for any particular water body is determined mainly by the amount and type of boat traffic it supports and the chemical characteristics and temperature it maintains. While the goal is to prevent the mussels from becoming established in New England waters, zebra mussels have proven to be adaptable creatures able to survive in a growing range of environmental conditions. Cooperative monitoring activities coordinated by the New Hampshire Lakes Lay Monitoring Program will help determine if and when zebra mussels become established in this region. If zebra mussels are found, information
about control techniques can help those concerned choose the best method to reduce the
destructive impacts of the mussels. The susceptibility of Silver Lake to zebra mussel
colonization is low. Calcium levels in the lake are very low and below the minimum
concentrations currently considered necessary to support the mussels.

What are Zebra Mussels?

Zebra mussels are non-native, freshwater mollusks. Their shells are marked by
varying patterns of alternating dark and light bands. They are typically less than two inches
long. The veligers (larval form) are free swimming, nearly invisible, and profuse. The
adults secrete strong byssal threads by which they attach and reattach themselves to a
variety of surfaces. These threads allow them to colonize quickly and reach densities of
100,000 or more mussels per square yard. The mussels have an average lifespan of 3.5 to
5 years.

Zebra mussels originated in the drainage basins of the Black, Caspian, and Aral
seas of eastern Europe and have been in northwestern freshwater since the 1700s. Zebra
mussels were first found in North America during 1988 in the waters of Lake Saint Clair,
which is located between Lake Erie and Lake Huron. It is suspected that they arrived there
as free-floating veligers within the ballast waters of a transoceanic ship during 1986.

What do Zebra Mussels do?

In areas they infest, zebra mussels...

* attach themselves to boat hulls, creating drag and fouling moving parts.
* enter boat engine cooling systems, clogging them and causing overheating.
* colonize and clog raw water intake pipes and screens at municipal water facilities, power
generating plants, industrial facilities, and shoreline residences.
* produce foul smells and bad tastes in water supplies where they are decomposing.
* litter beaches, making walking hazardous and producing unpleasant odors.
* colonize and contaminate shoals, creating inhospitable fish nesting areas and crowding them.

* compete with zooplankton (an important fish food) for phytoplankton (microscopic algae). This causes a decrease in the amount of phytoplankton and makes the water clearer. However it adversely impacts other members of aquatic food webs, including fish.

* compete with native shellfish

* become prey for diving ducks and some species of fish. However, no predator capable of controlling them has been found.

What can you do?

Take responsibilities for our waters. If you’ve been boating in fresh water outside of New England within the past 10 days and plan to launch locally, please...

Inspect your boat and trailer for weeds. Remove and discard any you find. Zebra mussels are commonly found on aquatic plants in areas of infestation.

Flush the cooling system, bilge areas and live wells with tap water.

Discard all bait that has contacted waters that might be infested.

Leave your boat out of water to dry for 48 hours. If it is visibly fouled by algae, leave it out until the exterior is completely dry or...

Wash down the hull at a car wash. Hot (140 degree F) water kills zebra mussels and veligers and high pressure spray helps remove them. Wash fouling off your boat away from water sources!

Learn more about the zebra mussel threat in order to be forewarned of the situation and prevent costly repairs or destructive responses.

Share information, ideas and monitoring tasks with other members of your lake association, watershed council, marina club, conservation commission, angling group or civic organization.
Report any sightings to the New Hampshire Lakes Lay Monitoring Program. Preserve specimens in alcohol if possible, note the location where they were found, and send them in to confirm the identification.

Remember, so far no zebra mussel sightings have been substantiated in New Hampshire waterways. Confirm suspect specimens with an authority before alarming others.

How do you recognize one?

Zebra mussels commonly collect in vegetation, on docks or pilings, and along shoreline cobble and rocks.

* Adult zebra mussels are about the size of a dime and have dark and light stripes on their shells.

* Each half of the adult shell has a ridge running lengthwise down it. This creates a flat side where the two shells meet.

* Zebra mussels are the only freshwater mussels that attach to objects with byssal threads.

* A gritty feeling on your boat's hull may indicate that zebra mussel veligers have settled.

Where can you get more information?

To receive more information, request an educational presentation for your next group meeting, become involved in monitoring efforts, or confirm an identification, contact:

Sea Grant/Cooperative Extension
Kingman Farm
University of New Hampshire
Durham, NH 03824-3512
(603) 749-1565
REFERENCES

REPORT FIGURES
Figure 1. The upper graph depicts weekly chlorophyll concentrations of a model lake measured weekly during ice-free conditions. The long-term trend is that of increased eutrophication (lake has become "greener"). Diamonds below the curve represent late summer (August) dates the data set was subsampled to create Figure 2.

Figure 2. The lower graph depicts late summer chlorophyll data of the model lake in Figure 1. Note how limited sampling over a five year period suggests a much different trend, that of decreasing eutrophy. Thus, limited sampling can mislead the investigator of long-term trends.
Figure 3. Location of deep and tributary sampling stations for Silver Lake, Madison, New Hampshire.
Figure 4. Silver Lake, Site 1 South. Seasonal trends for Secchi Disk Depth (water transparency), 1992. Dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 5. Silver Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 1 South. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a. The dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 6. Silver Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 1 South. Color expressed as platinum-cobalt units (ptu). The dotted horizontal line represents the dissolved color average for participating LLMP lakes.
Figure 7. Silver Lake, Site 2 Deep. Seasonal trends for Secchi Disk Depth (water transparency), 1992. Dotted horizontal lines on the plot border, the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 8. Silver Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 2 Deep. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a. The dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 9. Silver Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 2 Deep. Color expressed as platinum-cobalt units (ptu). The dotted horizontal line represents the dissolved color average for participating LLMP lakes.
Figure 10. Silver Lake, Site 3 Center. Seasonal trends for Secchi Disk Depth (water transparency), 1992. Dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 11. Silver Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 3 Center. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a. The dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 12. Silver Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 3 Center. Color expressed as platinum-cobalt units (ptu). The dotted horizontal line represents the dissolved color average for participating LLMP lakes.
Figure 13. Silver Lake, Site 4 East. Seasonal trends for Secchi Disk Depth (water transparency), 1992. Dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes while the double solid line represents the maximum depth at the site.

Figure 14. Silver Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 4 East. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a. The dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 15. Silver Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 4 East. Color expressed as platinum-cobalt units (ptu). The dotted horizontal line represents the dissolved color average for participating LLMP lakes.
Figure 16. Silver Lake, Site 5 North. Seasonal trends for Secchi Disk Depth (water transparency), 1992. Dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 17. Silver Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 5 North. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a. The dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 18. Silver Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 5 North. Color expressed as platinum-cobalt units (ptu). The dotted horizontal line represents the dissolved color average for participating LLMP lakes.
Figure 19. Silver Lake, Site 7 North Island. Seasonal trends for Secchi Disk Depth (water transparency), 1992. Dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 20. Silver Lake, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 7 North Island. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a. The dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 21. Silver Lake, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 7 North Island. Color expressed as platinum-cobalt units (ptu). The dotted horizontal line represents the dissolved color average for participating LLMP lakes.
Figure 22. Comparison of 1992 Silver Lake lay monitor Chlorophyll a data with historical data. The patterns of the bars display the minimum, mean and maximum values for the respective years sampled while the length of the bars represents the total range of values. The higher the chlorophyll a concentration, the more algal growth (i.e. greener water).
COMPARISON: 1992 TO HISTORICAL DATA
SILVER LAKE CHLOROPHYLL a
LAY MONITOR DATA

LEGEND KEY

1983-1991
1 South 1992

1983-1991
2 Deep 1992

1983-1991
3 Center 1992

1983-1991
4 East 1992

1983-1991
5 North 1992

1988-1991
7 Northis 1992

MINIMUM

LOW

MODERATE

AVERAGE

HIGH

CHLOROPHYLL a CONCENTRATION (ppb)

The higher number = more algae
Figure 23. Comparison of 1992 Silver Lake lay monitor Secchi Disk Transparency data with historical data. The patterns of the bars display the minimum, mean and maximum values for the respective years sampled while the length of the bars represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi disk readings are taken to the nearest tenth (0.1) of a meter.
COMPARISON: 1992 TO HISTORICAL DATA
SILVER LAKE WATER CLARITY
LAY MONITOR DATA

The higher number = clearer water

LEGEND KEY

1983-1991
1 South 1992

1983-1991
2 Deep 1992

1983-1991
3 Center 1992

1983-1991
4 East 1992

1983-1991
5 North 1992

1988-1991
7 Northls 1992

SECCHI DISK DEPTH (m)

LOW MODERATE HIGH

MINIMUM AVERAGE MAXIMUM

* = SECCHI DISK ON SITE BOTTOM
Figure 24. Profiles of temperature and dissolved oxygen taken on August 13, 1992 from Sites (A) 2 Deep, (B) 5 North and (C) 7 North Island. The units of measurement are as indicated on the respective graphs. Dissolved oxygen and temperature were measured at one-half meter intervals.
TEMPERATURE - OXYGEN PROFILE
SILVER LAKE (MADISON) - SITE 2 DEEP
AUGUST 13, 1992

TEMPERATURE (°C)

DEPTH (m) 0 5 10 16 20 25 30
0 10 16 20

OXYGEN (mg/l) 0 3 6 9 12 15 18

--- DISSOLVED OXYGEN --- TEMPERATURE

TEMPERATURE - OXYGEN PROFILE
SILVER LAKE (MADISON) - SITE 5 NORTH
AUGUST 13, 1992

TEMPERATURE (°C)

DEPTH (m) 0 5 10 16 20 25 30
0 4 8 12

OXYGEN (mg/l) 0 3 6 9 12 15 18

--- DISSOLVED OXYGEN --- TEMPERATURE

TEMPERATURE - OXYGEN PROFILE
SILVER LAKE (MADISON) - SITE 7 NORTH ISL
AUGUST 13, 1992

TEMPERATURE (°C)

DEPTH (m) 0 5 10 15 20 25 30
0 3 8 9

OXYGEN (mg/l) 0 3 6 9 12 15 18

--- DISSOLVED OXYGEN --- TEMPERATURE

Note: low dissolved oxygen level below 9 meters
Figure 25. Pie diagrams of phytoplankton abundance for Silver Lake, collected on August 13, 1992. The samples were taken from the upper mixed layer of water at Sites (A) 2 Deep, (B) 5 North and (C) 7 North Island. The phytoplankton abundance is presented as relative percent by algal class.
SITE 2 DEEP
DEPTH 0–4.5 meters
AUGUST 13, 1992

Golden Algae 19%
Cryptomonads 9%
Dinoflagellates 15%
Bluegreens 39%
Diatoms 18%
Greens 1%

SITE 5 NORTH
DEPTH 0–6.0 meters
AUGUST 13, 1992

Golden Algae 35%
Dinoflagellates 12%
Bluegreens 23%
Cryptomonads 11%
Greens 10%
Diatoms 10%

SILVER LAKE (MADISON)

SITE 7 NORTH ISLAND
DEPTH 0–6.0 meters
AUGUST 13, 1992

Golden Algae 28%
Dinoflagellates 6%
Cryptomonads 7%
Bluegreens 34%
Diatoms 14%
Greens 6%

PHYTOPLANKTON ABUNDANCE = RELATIVE % BY ALGAL GROUP
Figure 26. Pie diagrams of MacroZooplankton abundance for Silver Lake, Sites (A) 2 Deep, (B) 5 North and (C) 7 North Island. The date and depth of Macrozooplankton tow are indicated above the respective pie diagrams. The MacroZooplankton abundances (for the respective planktonic genera) are presented as number of animals per liter of lakewater.
SITE 2 DEEP
MACROZOOPLANKTON DATA 0-17.5 meters
8-13-92

Cyclopaids 1.45
Holocephium 0.46
Diaphanosoma 0.3
D. Catawba 0.72
Diaptomus 4.3

SITE 5 NORTH
MACROZOOPLANKTON DATA 0-14.5 meters
8-13-92

Cyclopaids 3.07
Euryomphila 0.07
Cyclopaids 0.14
Diaphanosoma 0.21
D. Copepoid 0.45
D. Ambigua 0.36
D. Copepoid 0.43
Diaptomus 0.04

SILVER LAKE (MADISON)

SITE 7 NORTH ISLAND
MACROZOOPLANKTON DATA 0-10.0 meters
8-13-92

Cyclopaids 5.51
Holocephium 0.1
D. Scoloides 0.1
Bosmina 1.0
Diaphanosoma 0.42
Holocephium 0.1
D. Copepoid 0.31
Diaptomus 6.3

MACROZOOPLANKTON DENSITIES = # OF ANIMALS PER LITER
Silver Lake (Madison) Data on file as of 12/29/1992

Lakes Lay Monitoring Program, U.N.H.

{Lay Monitor Data}

Silver Lake (Madison), NH
--- subset of trophic indicators, all sites, 1992

1992 SUMMARY
Average transparency: 7.1 (1992: 70 values; 4.9 - 10.5 range)
Average chlorophyll: 1.2 (1992: 83 values; 0.4 - 2.1 range)
Average phosphorus: 2.1 (1992: 24 values; 1.0 - 6.2 range)
Average alk (gray): 3.6 (1992: 60 values; 3.1 - 4.1 range)
Average alk (pink): 4.1 (1992: 60 values; 3.6 - 4.9 range)
Average color, 440: 19.2 (1992: 70 values; 11.2 - 30.9 range)
Average Trib. phos: 1.3 (1992: 2 values; 1.3 - 1.3 range)

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Transparency (m)</th>
<th>Chl a (ppb)</th>
<th>Total Phos (ppb)</th>
<th>Alk. (gray)</th>
<th>Alk. (pink)</th>
<th>Color Pt-Co units</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 South</td>
<td>06/17/1992</td>
<td>7.0</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>24.1</td>
<td>---</td>
</tr>
<tr>
<td>1 South</td>
<td>06/24/1992</td>
<td>6.2</td>
<td>1.4</td>
<td>1.1</td>
<td>---</td>
<td>---</td>
<td>18.9</td>
<td>---</td>
</tr>
<tr>
<td>1 South</td>
<td>06/30/1992</td>
<td>6.3</td>
<td>0.7</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>18.9</td>
<td>---</td>
</tr>
<tr>
<td>1 South</td>
<td>07/07/1992</td>
<td>7.7</td>
<td>1.1</td>
<td>---</td>
<td>4.0</td>
<td>4.3</td>
<td>18.0</td>
<td>---</td>
</tr>
<tr>
<td>1 South</td>
<td>07/16/1992</td>
<td>7.5</td>
<td>1.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>13.7</td>
<td>---</td>
</tr>
<tr>
<td>1 South</td>
<td>07/23/1992</td>
<td>7.4</td>
<td>1.4</td>
<td>1.3</td>
<td>3.6</td>
<td>4.1</td>
<td>14.6</td>
<td>---</td>
</tr>
<tr>
<td>1 South</td>
<td>07/24/1992</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>6.5</td>
</tr>
<tr>
<td>1 South</td>
<td>07/29/1992</td>
<td>7.2</td>
<td>1.1</td>
<td>---</td>
<td>3.6</td>
<td>4.1</td>
<td>17.2</td>
<td>---</td>
</tr>
<tr>
<td>1 South</td>
<td>08/06/1992</td>
<td>7.5</td>
<td>1.4</td>
<td>---</td>
<td>3.5</td>
<td>3.9</td>
<td>22.3</td>
<td>---</td>
</tr>
<tr>
<td>1 South</td>
<td>08/20/1992</td>
<td>7.5</td>
<td>1.0</td>
<td>---</td>
<td>3.6</td>
<td>4.2</td>
<td>---</td>
<td>6.9</td>
</tr>
<tr>
<td>1 South</td>
<td>08/26/1992</td>
<td>8.5</td>
<td>1.0</td>
<td>---</td>
<td>3.6</td>
<td>4.2</td>
<td>17.2</td>
<td>6.2</td>
</tr>
<tr>
<td>1 South</td>
<td>09/02/1992</td>
<td>7.0</td>
<td>1.4</td>
<td>---</td>
<td>3.7</td>
<td>4.2</td>
<td>18.0</td>
<td>---</td>
</tr>
<tr>
<td>1 South</td>
<td>09/07/1992</td>
<td>7.9</td>
<td>1.9</td>
<td>---</td>
<td>3.7</td>
<td>4.2</td>
<td>18.0</td>
<td>---</td>
</tr>
<tr>
<td>1 South</td>
<td>09/14/1992</td>
<td>6.2</td>
<td>1.0</td>
<td>1.3</td>
<td>3.5</td>
<td>4.1</td>
<td>18.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1 South</td>
<td>09/21/1992</td>
<td>8.7</td>
<td>0.6</td>
<td>---</td>
<td>4.0</td>
<td>4.5</td>
<td>15.5</td>
<td>6.8</td>
</tr>
<tr>
<td>2 Deep</td>
<td>06/17/1992</td>
<td>8.4</td>
<td>1.4</td>
<td>1.8</td>
<td>---</td>
<td>---</td>
<td>12.0</td>
<td>---</td>
</tr>
<tr>
<td>2 Deep</td>
<td>06/21/1992</td>
<td>---</td>
<td>---</td>
<td>2.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2 Deep</td>
<td>06/24/1992</td>
<td>6.2</td>
<td>0.9</td>
<td>1.1</td>
<td>---</td>
<td>---</td>
<td>23.2</td>
<td>---</td>
</tr>
<tr>
<td>2 Deep</td>
<td>06/30/1992</td>
<td>7.1</td>
<td>0.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>19.8</td>
<td>---</td>
</tr>
<tr>
<td>2 Deep</td>
<td>07/07/1992</td>
<td>7.7</td>
<td>0.9</td>
<td>---</td>
<td>3.5</td>
<td>3.9</td>
<td>18.0</td>
<td>---</td>
</tr>
<tr>
<td>2 Deep</td>
<td>07/16/1992</td>
<td>8.8</td>
<td>1.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>14.6</td>
<td>---</td>
</tr>
<tr>
<td>2 Deep</td>
<td>07/23/1992</td>
<td>7.2</td>
<td>1.1</td>
<td>1.8</td>
<td>3.2</td>
<td>3.8</td>
<td>17.2</td>
<td>---</td>
</tr>
<tr>
<td>2 Deep</td>
<td>07/29/1992</td>
<td>7.2</td>
<td>1.0</td>
<td>---</td>
<td>3.1</td>
<td>3.7</td>
<td>19.8</td>
<td>---</td>
</tr>
<tr>
<td>2 Deep</td>
<td>08/06/1992</td>
<td>8.0</td>
<td>1.1</td>
<td>---</td>
<td>3.2</td>
<td>3.8</td>
<td>16.3</td>
<td>---</td>
</tr>
<tr>
<td>2 Deep</td>
<td>08/20/1992</td>
<td>7.0</td>
<td>1.3</td>
<td>---</td>
<td>3.5</td>
<td>3.8</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2 Deep</td>
<td>08/26/1992</td>
<td>8.0</td>
<td>1.0</td>
<td>---</td>
<td>3.6</td>
<td>4.1</td>
<td>---</td>
<td>7.0</td>
</tr>
<tr>
<td>2 Deep</td>
<td>09/02/1992</td>
<td>6.7</td>
<td>1.1</td>
<td>---</td>
<td>3.6</td>
<td>4.0</td>
<td>21.5</td>
<td>6.8</td>
</tr>
<tr>
<td>2 Deep</td>
<td>09/07/1992</td>
<td>7.0</td>
<td>1.9</td>
<td>---</td>
<td>3.6</td>
<td>4.1</td>
<td>25.6</td>
<td>6.8</td>
</tr>
<tr>
<td>2 Deep</td>
<td>09/14/1992</td>
<td>6.4</td>
<td>0.6</td>
<td>1.3</td>
<td>3.6</td>
<td>4.1</td>
<td>18.0</td>
<td>6.7</td>
</tr>
<tr>
<td>Site</td>
<td>Date</td>
<td>Transparency (m)</td>
<td>Chl a (ppb)</td>
<td>Total Phos (ppb)</td>
<td>Alk. (gray) ph 5.1</td>
<td>Alk. (pink) ph 4.6</td>
<td>Color Pt-Co units</td>
<td>pH</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----</td>
</tr>
<tr>
<td>2 Deep</td>
<td>09/21/1992</td>
<td>9.5</td>
<td>1.0</td>
<td>---</td>
<td>4.0</td>
<td>4.6</td>
<td>17.2</td>
<td>6.9</td>
</tr>
<tr>
<td>3 Center</td>
<td>06/17/1992</td>
<td>7.1</td>
<td>1.4</td>
<td>2.0</td>
<td>---</td>
<td>---</td>
<td>25.8</td>
<td>---</td>
</tr>
<tr>
<td>3 Center</td>
<td>06/24/1992</td>
<td>6.2</td>
<td>0.9</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>25.8</td>
<td>---</td>
</tr>
<tr>
<td>3 Center</td>
<td>06/30/1992</td>
<td>6.3</td>
<td>0.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>19.8</td>
<td>---</td>
</tr>
<tr>
<td>3 Center</td>
<td>07/07/1992</td>
<td>7.6</td>
<td>0.9</td>
<td>---</td>
<td>3.2</td>
<td>3.7</td>
<td>18.9</td>
<td>---</td>
</tr>
<tr>
<td>3 Center</td>
<td>07/16/1992</td>
<td>7.8</td>
<td>1.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>20.6</td>
<td>---</td>
</tr>
<tr>
<td>3 Center</td>
<td>07/23/1992</td>
<td>---</td>
<td>1.1</td>
<td>3.7</td>
<td>3.4</td>
<td>3.8</td>
<td>12.9</td>
<td>---</td>
</tr>
<tr>
<td>3 Center</td>
<td>07/29/1992</td>
<td>7.5</td>
<td>0.9</td>
<td>---</td>
<td>3.2</td>
<td>3.6</td>
<td>14.6</td>
<td>---</td>
</tr>
<tr>
<td>3 Center</td>
<td>07/24/1992</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>6.7</td>
</tr>
<tr>
<td>3 Center</td>
<td>08/06/1992</td>
<td>7.3</td>
<td>1.1</td>
<td>---</td>
<td>3.2</td>
<td>3.7</td>
<td>23.2</td>
<td>---</td>
</tr>
<tr>
<td>3 Center</td>
<td>08/20/1992</td>
<td>7.5</td>
<td>1.4</td>
<td>---</td>
<td>3.5</td>
<td>3.8</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3 Center</td>
<td>08/26/1992</td>
<td>7.5</td>
<td>0.8</td>
<td>---</td>
<td>3.6</td>
<td>4.0</td>
<td>---</td>
<td>7.0</td>
</tr>
<tr>
<td>3 Center</td>
<td>09/02/1992</td>
<td>6.8</td>
<td>1.3</td>
<td>---</td>
<td>3.9</td>
<td>4.3</td>
<td>17.2</td>
<td>6.9</td>
</tr>
<tr>
<td>3 Center</td>
<td>09/07/1992</td>
<td>7.0</td>
<td>1.7</td>
<td>---</td>
<td>3.9</td>
<td>4.3</td>
<td>30.9</td>
<td>6.9</td>
</tr>
<tr>
<td>3 Center</td>
<td>09/14/1992</td>
<td>8.1</td>
<td>0.4</td>
<td>1.3</td>
<td>3.6</td>
<td>4.3</td>
<td>18.9</td>
<td>6.8</td>
</tr>
<tr>
<td>3 Center</td>
<td>09/21/1992</td>
<td>8.5</td>
<td>0.8</td>
<td>---</td>
<td>3.8</td>
<td>4.2</td>
<td>---</td>
<td>6.8</td>
</tr>
<tr>
<td>4 East</td>
<td>06/17/1992 bottom</td>
<td>1.4</td>
<td>2.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>24.1</td>
<td>---</td>
</tr>
<tr>
<td>4 East</td>
<td>06/30/1992 bottom</td>
<td>0.9</td>
<td>1.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>20.6</td>
<td>---</td>
</tr>
<tr>
<td>4 East</td>
<td>07/07/1992 bottom</td>
<td>1.1</td>
<td>---</td>
<td>3.1</td>
<td>3.7</td>
<td>20.6</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4 East</td>
<td>07/16/1992 bottom</td>
<td>1.7</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>18.0</td>
<td>---</td>
</tr>
<tr>
<td>4 East</td>
<td>07/23/1992</td>
<td>5.7</td>
<td>2.1</td>
<td>3.1</td>
<td>3.5</td>
<td>4.0</td>
<td>19.8</td>
<td>---</td>
</tr>
<tr>
<td>4 East</td>
<td>07/24/1992</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>6.6</td>
</tr>
<tr>
<td>4 East</td>
<td>07/29/1992 bottom</td>
<td>0.9</td>
<td>---</td>
<td>3.5</td>
<td>4.0</td>
<td>22.3</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4 East</td>
<td>08/06/1992 bottom</td>
<td>1.0</td>
<td>---</td>
<td>3.6</td>
<td>3.9</td>
<td>19.8</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4 East</td>
<td>08/20/1992 bottom</td>
<td>1.1</td>
<td>---</td>
<td>3.6</td>
<td>3.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4 East</td>
<td>08/26/1992 bottom</td>
<td>1.1</td>
<td>---</td>
<td>3.4</td>
<td>4.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4 East</td>
<td>09/02/1992 bottom</td>
<td>1.1</td>
<td>---</td>
<td>3.5</td>
<td>4.0</td>
<td>19.8</td>
<td>6.9</td>
<td>---</td>
</tr>
<tr>
<td>4 East</td>
<td>09/07/1992 bottom</td>
<td>1.7</td>
<td>---</td>
<td>3.5</td>
<td>4.4</td>
<td>21.5</td>
<td>6.9</td>
<td>---</td>
</tr>
<tr>
<td>4 East</td>
<td>09/14/1992 bottom</td>
<td>1.1</td>
<td>1.3</td>
<td>3.6</td>
<td>4.2</td>
<td>18.9</td>
<td>6.8</td>
<td>---</td>
</tr>
<tr>
<td>4 East</td>
<td>09/21/1992 bottom</td>
<td>0.9</td>
<td>---</td>
<td>4.1</td>
<td>4.7</td>
<td>20.6</td>
<td>6.8</td>
<td>---</td>
</tr>
<tr>
<td>5 North</td>
<td>06/17/1992</td>
<td>6.5</td>
<td>1.6</td>
<td>1.1</td>
<td>---</td>
<td>---</td>
<td>11.2</td>
<td>---</td>
</tr>
<tr>
<td>5 North</td>
<td>06/24/1992</td>
<td>6.1</td>
<td>1.0</td>
<td>6.2</td>
<td>---</td>
<td>---</td>
<td>18.0</td>
<td>---</td>
</tr>
<tr>
<td>5 North</td>
<td>06/30/1992</td>
<td>6.8</td>
<td>1.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>17.2</td>
<td>---</td>
</tr>
<tr>
<td>5 North</td>
<td>07/07/1992</td>
<td>6.8</td>
<td>1.2</td>
<td>---</td>
<td>3.4</td>
<td>3.8</td>
<td>19.8</td>
<td>---</td>
</tr>
<tr>
<td>5 North</td>
<td>07/16/1992</td>
<td>7.1</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>15.5</td>
<td>---</td>
</tr>
<tr>
<td>5 North</td>
<td>07/23/1992</td>
<td>5.5</td>
<td>1.8</td>
<td>2.0</td>
<td>3.4</td>
<td>3.7</td>
<td>25.8</td>
<td>---</td>
</tr>
<tr>
<td>5 North</td>
<td>07/24/1992</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>6.8</td>
</tr>
<tr>
<td>5 North</td>
<td>07/29/1992</td>
<td>7.8</td>
<td>1.5</td>
<td>---</td>
<td>3.5</td>
<td>3.8</td>
<td>17.2</td>
<td>---</td>
</tr>
<tr>
<td>5 North</td>
<td>08/06/1992</td>
<td>5.8</td>
<td>1.6</td>
<td>---</td>
<td>3.5</td>
<td>4.0</td>
<td>23.2</td>
<td>---</td>
</tr>
<tr>
<td>5 North</td>
<td>08/20/1992</td>
<td>6.0</td>
<td>1.5</td>
<td>---</td>
<td>3.6</td>
<td>4.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5 North</td>
<td>08/26/1992</td>
<td>9.5</td>
<td>0.9</td>
<td>---</td>
<td>3.5</td>
<td>4.0</td>
<td>---</td>
<td>6.9</td>
</tr>
<tr>
<td>5 North</td>
<td>09/02/1992</td>
<td>6.0</td>
<td>1.5</td>
<td>---</td>
<td>3.5</td>
<td>4.1</td>
<td>18.9</td>
<td>6.9</td>
</tr>
<tr>
<td>5 North</td>
<td>09/07/1992</td>
<td>6.2</td>
<td>1.7</td>
<td>---</td>
<td>3.8</td>
<td>4.4</td>
<td>19.8</td>
<td>6.9</td>
</tr>
<tr>
<td>5 North</td>
<td>09/14/1992</td>
<td>6.6</td>
<td>0.4</td>
<td>---</td>
<td>3.7</td>
<td>4.3</td>
<td>17.2</td>
<td>6.8</td>
</tr>
<tr>
<td>5 North</td>
<td>09/21/1992</td>
<td>7.3</td>
<td>0.8</td>
<td>---</td>
<td>3.7</td>
<td>4.2</td>
<td>16.3</td>
<td>6.8</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>06/17/1992</td>
<td>7.0</td>
<td>1.6</td>
<td>1.5</td>
<td>---</td>
<td>---</td>
<td>19.8</td>
<td>---</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>06/24/1992</td>
<td>5.6</td>
<td>1.6</td>
<td>3.5</td>
<td>---</td>
<td>---</td>
<td>21.5</td>
<td>---</td>
</tr>
</tbody>
</table>
Silver Lake (Madison) Data on file as of 12/29/1992

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Transparency (m)</th>
<th>Chl a (ppb)</th>
<th>Total Phos (ppb)</th>
<th>Alk. (gray) ph 5.1</th>
<th>Alk. (pink) ph 4.6</th>
<th>Color Pt-Co units</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 NorthIs</td>
<td>06/30/1992</td>
<td>6.7</td>
<td>0.9</td>
<td>4.6</td>
<td>---</td>
<td>---</td>
<td>17.2</td>
<td>---</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>07/07/1992</td>
<td>6.1</td>
<td>1.3</td>
<td>---</td>
<td>3.3</td>
<td>3.8</td>
<td>23.2</td>
<td>---</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>07/16/1992</td>
<td>6.5</td>
<td>1.7</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>07/23/1992</td>
<td>5.1</td>
<td>2.1</td>
<td>1.0</td>
<td>3.5</td>
<td>3.7</td>
<td>19.8</td>
<td>---</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>07/24/1992</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>6.7</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>07/29/1992</td>
<td>7.1</td>
<td>1.1</td>
<td>---</td>
<td>3.4</td>
<td>3.7</td>
<td>15.5</td>
<td>---</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>08/06/1992</td>
<td>7.0</td>
<td>1.3</td>
<td>---</td>
<td>3.4</td>
<td>3.8</td>
<td>18.9</td>
<td>---</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>08/20/1992</td>
<td>7.0</td>
<td>1.3</td>
<td>---</td>
<td>3.5</td>
<td>3.8</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>08/26/1992</td>
<td>10.5</td>
<td>1.4</td>
<td>---</td>
<td>3.6</td>
<td>4.2</td>
<td>24.1</td>
<td>6.9</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>09/02/1992</td>
<td>4.9</td>
<td>1.4</td>
<td>---</td>
<td>3.5</td>
<td>4.2</td>
<td>24.1</td>
<td>6.9</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>09/07/1992</td>
<td>7.0</td>
<td>1.7</td>
<td>---</td>
<td>4.0</td>
<td>4.9</td>
<td>20.6</td>
<td>6.9</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>09/14/1992</td>
<td>7.2</td>
<td>1.0</td>
<td>1.3</td>
<td>4.0</td>
<td>4.4</td>
<td>17.2</td>
<td>6.9</td>
</tr>
<tr>
<td>7 NorthIs</td>
<td>09/21/1992</td>
<td>8.1</td>
<td>1.1</td>
<td>---</td>
<td>4.0</td>
<td>4.6</td>
<td>18.0</td>
<td>6.7</td>
</tr>
<tr>
<td>8 ForestI</td>
<td>09/14/1992</td>
<td>---</td>
<td>---</td>
<td>1.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CooksInl</td>
<td>09/14/1992</td>
<td>---</td>
<td>---</td>
<td>1.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

<< End of 1992 listing, 92 records >>
TYPICAL TEMPERATURE CONDITIONS: SUMMER
NEW HAMPSHIRE - DEEP LAKE

DEPT (meters)

EPILIMNION
UPPER - WARM WATER LAYER - WIND MIXED

METALIMNION
SHARP DROP IN TEMPERATURE (THERMOCLINE)

HYPOLIMNION
BOTTOM COLD WATER LAYER
APPENDIX C

GLOSSARY OF LIMNOLOGICAL TERMS

Aerobe - Organisms requiring oxygen for life. All animals, most algae and some bacteria require oxygen for respiration.

Algae - See phytoplankton.

Alkalinity - Total concentration of bicarbonate and hydroxide ions (in most lakes).

Anaerobe - Organisms not requiring oxygen for life. Some algae and many bacteria are able to respire or ferment without using oxygen.

Anoxic - A system lacking oxygen, therefore incapable of supporting the most common kind of biological respiration, or of supporting oxygen-demanding chemical reactions. The deeper waters of a lake may become anoxic if there are many organisms depleting oxygen via respiration, and there is little or no replenishment of oxygen from photosynthesis or from the atmosphere.

Benthic - Referring to the bottom sediments.

Bacterioplankton - Bacteria adapted to the "open water" or "planktonic" zone of lakes, adapted for many specialized habitats and include groups that can use the sun's energy (phytoplankton), some that can use the energy locked in sulfur or iron, and others that gain energy by decomposing dead material.

Bicarbonate - The most important ion (chemical) involved in the buffering system of New Hampshire lakes.

Buffering - The capacity of lakewater to absorb acid with a minimal change in the pH. In New Hampshire the chemical responsible for buffering is the bicarbonate ion. (See pH.)

Chloride - One of the components of salts dissolved in lakewater. Generally the most abundant ion in New Hampshire lakewater, it may be used as an indicator of raw sewage or of road salt.

Chlorophyll a - The main green pigment in plants. The concentration of chlorophyll a in lakewater is often used as an indicator of algal abundance.

Circulation - The period during spring and fall when the combination of low water temperature and wind cause the water column to mix freely over its entire depth.

Density - The weight per volume of a substance. The more dense an object, the heavier it feels. Low-density liquids will float on higher-density liquids.

Dimictic - The thermal pattern of lakes where the lake circulates, or mixes, twice a year. Other patterns such as polymictic (many periods of circulation per year) are uncommon in New Hampshire. (See also meromictic and holomictic.)
Dystrophy - The lake trophic state in which the lakewater is highly stained with humic acids (reddish brown or yellow stain) and has low productivity. Chlorophyll a concentration may be low or high.

Epilimnion - The uppermost layer of water during periods of thermal stratification. (See lake diagram).

Eutrophy - The lake trophic state in which algal production is high. Associated with eutrophy is low Secchi disk depth, high chlorophyll a, and high total phosphorus. From an esthetic viewpoint these lakes are "bad" because water clarity is low, aquatic plants are often found in abundance, and cold-water fish such as trout and salmon are usually not present. A good aspect of eutrophic lakes is their high productivity in terms of warm-water fish such as bass, pickerel, and perch.

Free CO$_2$ - Carbon dioxide that is not combined chemically with lake water or any other substances. It is produced by respiration, and is used by plants and bacteria for photosynthesis.

Holomixis - The condition where the entire lake is free to circulate during periods of overturn. (See meromixis.)

Humic Acids - Dissolved organic compounds released from decomposition of plant leaves and stems. Humic acids are red, brown, or yellow in color and are present in nearly all lakes in New Hampshire. Humic acids are consumed only by fungi, and thus are relatively resistant to biological decomposition.

Hydrogen Ion - The "acid" ion, present in small amounts even in distilled water, but contributed to rain-water by atmospheric processes, to ground-water by soils, and to lakewater by biological organisms and sediments. The active component of "acid rain". See also "pH" the symbolic value inversely and exponentially related to the hydrogen ion.

Hypolimnion - The deepest layer of lakewater during periods of thermal stratification. (See lake diagram)

Lake - Any "inland" body of relatively "standing" water. Includes many synonyms such as ponds, tarns, loches, billabongs, bogs, marshes, etc.

Lake Morphology - The shape and size of a lake and its basin.

Littoral - The area of a lake shallow enough for submerged aquatic plants to grow.

Meromixis - The condition where the entire lake fails to circulate to its deepest points; caused by a high concentration of salt in the deeper waters, and by peculiar landscapes (small deep lakes surrounded by hills and/or forests. (Contrast holomixis.)

Mesotrophy - The lake trophic state intermediate between oligotrophy and eutrophy. Algal production is moderate, and chlorophyll a, Secchi disk depth, and total phosphorus are also moderate. These lakes are esthetically "fair" but not as good as oligotrophic lakes.

Metalimnion - The "middle" layer of the lake during periods of summer thermal stratification. Usually defined as the region where the water temperature changes at least
one degree per meter depth. Also called the thermocline.

Mixis - Periods of lakewater mixing or circulation.

Mixotrophy - The lake condition where the water is highly stained with humic acids, but algal production and chlorophyll a values are also high.

Oligotrophy - The lake trophic state where algal production is low, Secchi disk depth is deep, and chlorophyll a and total phosphorus are low. Esthetically these lakes are the "best" because they are clear and have a minimum of algae and aquatic plants. Deep oligotrophic lakes can usually support cold-water fish such as lake trout and land-locked salmon.

Overturn - See circulation or mixis

pH - A measure of the hydrogen ion concentration of a liquid. For every decrease of 1 pH unit, the hydrogen ion concentration increases 10 times. Symbolically, the pH value is the "negative logarithm" of the hydrogen ion concentration. For example, a pH of 5 represents a hydrogen ion concentration of 10^{-5} molar. [Please thank the chemists for this lovely symbolism -- and ask them to explain it in lay terms!] In any event, the higher the pH value, the lower the hydrogen ion concentration. The range is 0 to 14, with 7 being neutral 1 denoting high acid condition and 14 denoting very basic condition.

Photosynthesis - The process by which plants convert the inorganic substances carbon dioxide and water into organic glucose (sugar) and oxygen using sunlight as the energy source. Glucose is an energy source for growth, reproduction, and maintenance of almost all life forms.

Phytoplankton - Microscopic algae which are suspended in the "open water" zone of lakes and ponds. A major source of food for zooplankton. Common examples include: diatoms, euglenoids, dinoflagellates, and many others. Usually included are the blue-green bacteria.

Parts per million - Also known as "ppm". This is a method of expressing the amount of one substance (solute) dissolved in another (solvent). For example, a solution with 10 ppm of oxygen has 10 pounds of oxygen for every 999,990 pounds (500 tons) of water. Domestic sewage usually contains from 2 to 10 ppm phosphorus.

Parts per billion - Also known as "ppb". This is only 1/1000 of ppm, therefore much less concentrated. As little as 1 ppb of phosphorus will sustain growth of algae. As little as 10 ppb phosphorus will cause algal blooms! Think of the ratio as 1 milligram (1/28000 of an ounce) of phosphorus in 25 barrels of water (55-gallon drums)! Or, 1 gallon of septic waste diluted into 10,000 gallons of lakewater. It adds up fast!

Plankton - Community of microorganisms that live suspended in the water column, not attached to the bottom sediments or aquatic plants. See also "bacterioplankton" (bacteria), "phytoplankton" (algae) and "zooplankton" (microcrustaceans and rotifers).

Saturated - When a solute (such as water) has dissolved all of a substance that it can. For example, if you add table salt to water, a point is reached where any additional salt fails to dissolve. The water is then said to be saturated with table salt. In lakewater,
gaseous oxygen can dissolve, but eventually the water becomes saturated with oxygen if exposed sufficiently long to the atmosphere or another source of oxygen.

Specific Conductivity- A measure of the amount of salt present in lakewater. As the salt concentration increases, so does the specific conductivity (electrical conductivity).

Stratum- A layer or "blanket". Can be used to refer to one of the major layers of lakewater such as the epilimnion, or to any layers of organisms or chemicals that may be present in a lake.

Thermal Stratification- The process by which layers are built up in the lake due to heating by the sun and partial mixing by wind.

Thermocline- Region of temperature change. (See metalimnion.)

Total Phosphorus- A measure of the concentration of phosphorus in lakewater. Includes both free forms (dissolved), and chemically combined form (as in living tissue, or in dead but suspended organisms).

Trophic Status- A classification system placing lakes into similar groups according to their amount of algal production. (See Oligotrophy, Mesotrophy, Eutrophy, Mixotrophy, and Dystrophy for definitions of the major categories)

Z- A symbol used by limnologists as an abbreviation for depth.

Zooplankton- Microscopic animals in the planktonic community. Some are called "water fleas", but most are known by their scientific names. Scientific names include: *Daphnia, Cyclops, Bosmina*, and *Kellicottia*.