MOULTONBORO BAY
1992
LAKES LAY MONITORING PROGRAM

by
Jeffrey A. Schloss
Robert K. Craycraft

edited by
A.L. Baker and J.F. Haney

NEW HAMPSHIRE LAKES LAY MONITORING PROGRAM

FRESHWATER BIOLOGY GROUP
University of New Hampshire
Durham

UNIVERSITY OF NEW HAMPSHIRE
COOPERATIVE EXTENSION

To obtain more information about the NH Lakes Lay Monitoring Program (NH LLMP) contact the Coordinator (J. Schloss) at (603) 862-3848
Dr. Baker at 862-3845 or Dr. Haney at 862-2100
FBG Team correlate tests above and sample plankton
PREFACE

This report contains the findings of a water quality survey of Lake Winnipesaukee - Moultonboro Bay and Langdon Cove, New Hampshire, conducted in the summer of 1992 by the Freshwater Biology Group (FBG) of the University of New Hampshire and the Lake Winnipesaukee and Langdon Cove Associations.

The report is written with the concerned lake resident in mind and contains a brief, non-technical summary of 1992 results as well as more detailed "Introduction" and "Discussion" sections. Graphic display of data is included, in addition to listings of data in appendices, to aid visual perspective.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>1</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>3</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>5</td>
</tr>
<tr>
<td>LANGDON COVE - 1992 NON-TECHNICAL SUMMARY</td>
<td>7</td>
</tr>
<tr>
<td>MOULTONBORO BAY - 1992 NON-TECHNICAL SUMMARY</td>
<td>9</td>
</tr>
<tr>
<td>COMMENTS AND RECOMMENDATIONS</td>
<td>13</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>15</td>
</tr>
<tr>
<td>The New Hampshire Lakes Lay Monitoring Program</td>
<td>15</td>
</tr>
<tr>
<td>The General Scenario- 1992</td>
<td>16</td>
</tr>
<tr>
<td>Importance of Long-term Monitoring</td>
<td>17</td>
</tr>
<tr>
<td>Purpose and Scope of This Study</td>
<td>19</td>
</tr>
<tr>
<td>DISCUSSION OF LAKE MONITORING MEASUREMENTS</td>
<td>21</td>
</tr>
<tr>
<td>Thermal Stratification in the Deep Water Sites</td>
<td>21</td>
</tr>
<tr>
<td>Water Transparency</td>
<td>21</td>
</tr>
<tr>
<td>Chlorophyll a.</td>
<td>22</td>
</tr>
<tr>
<td>Dissolved Color</td>
<td>23</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>24</td>
</tr>
<tr>
<td>pH *</td>
<td>25</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>25</td>
</tr>
<tr>
<td>Specific Conductivity *</td>
<td>26</td>
</tr>
<tr>
<td>Dissolved Oxygen and Free Carbon Dioxide *</td>
<td>27</td>
</tr>
<tr>
<td>Underwater Light *</td>
<td>28</td>
</tr>
<tr>
<td>Indicator Bacteria *</td>
<td>28</td>
</tr>
<tr>
<td>Phytoplankton *</td>
<td>29</td>
</tr>
<tr>
<td>Zooplankton *</td>
<td>30</td>
</tr>
<tr>
<td>Fish Condition</td>
<td>31</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>33</td>
</tr>
<tr>
<td>FIGURES</td>
<td>33</td>
</tr>
<tr>
<td>DATA</td>
<td>A-1</td>
</tr>
<tr>
<td>LAKE DIAGRAMS</td>
<td>B-1</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>C-1</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

This was the eleventh year of participation in the Lakes Lay Monitoring Program (LLMP) for the Moultonboro Bay monitors and the eighth year of participation for the Langdon Cove Monitor. The Lay Monitor and coordinator for Langdon Cove was once again Doris Monahan. Moultonboro Bay was coordinated by Ralph Kirshner while the volunteer monitors included Potter Campbell, John S. Lyle, Rod Leland and Phyllis Shepard. The Freshwater Biology Group (FBG) congratulates the Lay Monitors on the quality of their work and the time and effort put forth. We encourage other interested members of the Lake Winnipesaukee and Langdon Cove Associations to continue monitoring during the 1993 season. Funding for the monitoring of Moultonboro Bay and Langdon Cove was again provided by the Lake Winnipesaukee and Langdon Cove Associations, respectively.

The Freshwater Biology Group is a not-for-profit research program co-supervised by Dr. Alan Baker and Dr. James Haney and coordinated by Jeffrey Schloss. Members of the FBG summer field team included Jeffrey Schloss, Robert Craycraft, Gregg Vereb, Gregg Stevens, Sean Proll, Matt Denneen and Robert Banks. Other FBG staff assisting in the fall were Eric Betke, Amanda Fifield, Jessica Chappell and Phil Lucason.

The FBG acknowledges the University of New Hampshire Cooperative Extension for funding and furnishing office, laboratory and storage space. The College of Life Sciences and Agriculture provided accounting support and the UNH Office of Computer Services provided computer time and data storage allocations.

Participating groups in the LLMP include: The New Hampshire Audubon Society, Derry Conservation Commission, Dublin Garden Club, Nashua Regional Planning Commission, Center Harbor Bay Conservation Commission, Governor's Island Club Inc., Little Island Pond Rod and Gun Club, Walker's Pond Conservation Society, United Associations of Alton, the Pemaquid Watershed Study Group, the associations of Baboosic
Lake, Beaver Lake, Berry Bay, Big Island Pond, Bow Lake Camp Owners, Chesham Pond, Lake Chocorua, Crystal Lake, Cunningham Pond, Dublin Lake, Glines Island, Goose Pond, Moultonboro Bay, Silver Lake Watershed, Langdon Cove, Long Island Landowners, Lovell Lake, Marchs Pond, Mascoma Lake, Mendum's Pond, Meredith Bay Rotary Club, Merrymeeting Lake, Milton Ponds Lake Lay Monitoring, Mirror Lake (Tuftonboro), Moultonbouro Bay, Lake Winnipesaukee, Naticook Lake, Newfound Lake, Nippo Lake, Peaporridge Pond, Perkins Pond, Pleasant Lake, Silver Lake (Hollis), Silver Lake (Harrisesville), Silver Lake (Madison), Silver Lake (Tilton), Squam Lakes, Lake Sunapee, Sunset Lake, Lake Waukewan, Lake Winona, Wentworth Lake and the towns of Alton, Amherst, Enfield, Hollis, Madison, Merrimack, Strafford and Wolfeboro.
LAKE WINNIPESAUKEE - LANGDON COVE
1992 NON-TECHNICAL SUMMARY

Monitoring was undertaken on Langdon Cove, by the volunteer monitor, from June 29 through September 4, 1992.

1) Water transparency at Langdon Cove was moderate to high during the 1992 sampling season, the sign of a relatively clear and unproductive New Hampshire lake. The secchi disk was visible as far down as 6.5 meters (21.1 feet) and the seasonal transparency average was 5.9 meters at Site 3 Langdon. This indicates the deepwater site on the lake contains low to moderate levels of dissolved color and suspended matter such as algae and particulates. The Average water clarity of Langdon Cove increased for the third consecutive year in 1992.

2) Chlorophyll a concentrations (an indicator of microscopic plant abundance) in the surface waters of Langdon Cove were low during most of the 1992 sampling season. Concentrations in the mixed layer of water averaged 2.2 milligrams per cubic meter (2.2 mg m\(^{-3}\) equivalent to about 2.2 parts chlorophyll per billion parts water) at Site 3 Langdon. Chlorophyll a concentrations decreased for the third consecutive year in 1992.

3) Dissolved lakewater color levels for Moultonboro Bay were low to moderate in 1992, 22.0 ptu (platinate color units), and slightly less than the average level of 26 ptu in other program lakes. Small increases in water color from the natural breakdown of plant materials in and around a lake are not considered to be detrimental to water quality. However, increased color can lower water transparency, and hence, change the public perception of water quality. Large amounts of dissolved color may occur naturally but also occur during deforestation and development within the watershed. High color levels can actually mask the ability of the secchi disk transparency to predict chlorophyll levels.
4) The alkalinity of the lake, the lake's ability to buffer acid input, remains low (7.2 units), but about one unit higher than the average of 6.3 units for LLMP lakes. The alkalinity data indicate that Langdon Cove seems to have a low, but sufficient, buffering capacity at this time to resist fluctuations in pH caused by acid loadings.

7) Temperature profiles collected by the volunteer monitors disclosed the typical temperature stratification patterns for northern temperate lakes. With the depth of the upper mixed layer of water extending to about 6.0 meters.

8) For all measurements considered and averaged for the season, Langdon Cove would be considered a relatively clear and unproductive, oligotrophic, lake.
MOULTONBORO BAY
1992 NON-TECHNICAL SUMMARY

Monitoring was undertaken on Moultonboro Bay, by the volunteer monitors, from June 3 through September 17, 1992 while a more in-depth analysis of the lake was undertaken by the FBG on July 20.

1) Water transparency of Moultonboro Bay was high during the 1992 sampling season, the sign of an unproductive New Hampshire lake. The secchi disk was visible as far down as 8.3 meters (27.0 feet) and the seasonal transparency average was 7.0 meters at Site 5 Melvin, 5.7 meters at Site 6 Bald Peak and 6.9 meters at Site 20 Mile Bay. This indicates the deepwater sites on the lake contain low levels of dissolved color and suspended matter such as algae and particulates. The average water clarity of Site 5 Melvin increased for the fourth consecutive year in 1992. Sampling of the Bald Peak sampling was not undertaken in 1991, however, the seasonal average water clarity was higher than the average levels recorded in 1986, 1987 and 1990. While no comparisons can be made for the 20 Mile Bay sampling station, as 1991 was the first year of monitoring this site, the average secchi disk level was typical of sites exhibiting low productivity levels.

2) Chlorophyll a concentrations (an indicator of microscopic plant abundance) in the surface waters of Moultonboro Bay were low during the 1992 sampling season. Concentrations in the mixed layer of water averaged 1.4 milligrams per cubic meter (1.4 mg m\(^{-3}\) equivalent to about 1.4 parts chlorophyll per billion parts water) at Site 5 Melvin Bay, 1.1 mg m\(^{-3}\) at Site 6 Bald Peak and 1.3 mg m\(^{-3}\) at Site 20 Mile Bay. The average chlorophyll a concentrations of the Bald Peak and Melvin Bay sampling stations decreased in 1992 and are typical of unproductive New Hampshire lakes.
3) Dissolved lakewater color levels for Moultonboro Bay were moderate in 1992, 23.1 ptu (platinate color units), but slightly less than the average level of 26 ptu in other program lakes. Small increases in water color from the natural breakdown of plant materials in and around a lake are not considered to be detrimental to water quality. However, increased color can lower water transparency, and hence, change the public perception of water quality. Large amounts of dissolved color may occur naturally but also occur during deforestation and development within the watershed. High color levels can actually mask the ability of the secchi disk transparency to predict chlorophyll levels.

4) Total phosphorus (nutrient) levels, collected by the FBG, remained below the concentration of 15 parts per billion (ppb) commonly referred to as the boundary between unproductive and moderately productive lakes. The phosphorus concentration ranged from 3.5 to 12.1 ppb on the July 20 sampling date.

5) The pH of the surface waters of the lake, measured by the FBG, remains within the optimum range for most aquatic organisms. The alkalinity of the lake, the lakes ability to buffer acid input, remains low, but similar to the average of 6.3 units for LLMP lakes (see Langdon Cove non-technical summary). The alkalinity data indicate that Lake Winnipesaukee seems to have a low, but sufficient, buffering capacity at this time to resist fluctuations in pH caused by acid loadings.

6) The specific conductivity of the deep sites on Moultonboro Bay was low and ranged from 44.5 to 56.0 on the July 20 sampling date. High conductivity values can indicate the presence of septic leachate or deicing road salt runoff.

7) Temperature profiles collected by the volunteer monitors disclosed the typical temperature stratification patterns for northern temperate lakes. With the depth of the upper mixed layer of water extending to about 7.0 meters. Oxygen content of the bottom waters
remained above 5 milligrams per liter (the minimum concentration required for successful reproduction and growth of most coldwater fish) to the lake-bottom on the July 20 sampling date.

8) For all measurements considered and averaged for the season, Moultonboro Bay would be considered a relatively clear and unproductive, oligotrophic, lake.

9) Data collected by the volunteer monitors of Moultonboro Bay compare well with the data collected by the FBG.
COMMENTS AND RECOMMENDATIONS

1) We recommend that each participating association, including the Lake Winnipesaukee and Langdon Cove Associations, continue to develop its data base on lake water quality through continuation of the long term monitoring program. The data base will provide information on the short and long-term cyclic variability that occurs in the lake and eventually will enable more reliable predictions of water quality trends.

2) We recommend including phosphorous (nutrient) sampling during the 1992 sampling season. Sampling should be undertaken during times of heavy use (i.e. July 4, Labor Day) and again late in the season when septic systems have been put through a full seasons use. Deep sites as well as tributary samples should be included.

3) We suggest including an FBG team trip for Langdon Cove, to further assess the condition of the 3 Langdon sampling station. The sampling trip could be arranged concurrently with the Moultonboro Bay sampling date, to minimize expenses for both lake associations.
INTRODUCTION

The New Hampshire Lakes Lay Monitoring Program

In this fifteenth year of operation, the NH Lakes Lay Monitoring Program has grown from a university class project on Chocorua Lake and pilot study on the Squam Lakes to a comprehensive state-wide program with over 500 volunteer monitors and more than 100 lakes participating. Originally developed to establish a data-base for determining long-term trends of lake water quality for science and management, the program has expanded by taking advantage of the many resources that citizen monitors can provide. The NH LLMP has an international reputation as a successful cooperative monitoring, education and research program. Current projects include: use of volunteer generated data for non-point pollution studies using high tech analysis system (Geographic Information Systems and Satellite Remote Sensing), intensive watershed monitoring for the development of lake nutrient budgets, and investigations of water quality and indicator organisms (food web analysis, fish condition, and stream invertebrates). The key ingredients responsible for the success of the program include innovative funding and cost reduction, assurance of credible data, practical sampling protocols and, most importantly, the interest and motivation of our volunteer monitors.

The 1992 sampling season was another exciting year for the New Hampshire Lakes Lay Monitoring Program. National recognition for the high quality of work by you, the volunteer monitors, continued with awards, requests for program information and invitations to speak at national conferences. We continue to be listed as a model citizen monitoring program on the Environmental Success Index of Renew America and on the Environmental Network Clearinghouse. To date, the approach and methods of the NH LLMP have been adopted by new or existing programs in fifteen states and nine countries!
Our Fish Condition Program intensive lake survey results have been tabulated, reports went to NH Fish & Game (our sponsor) and the results for individual lakes are forthcoming. Our fish study team is now focusing on the Newfound Lake fishery to determine the effects and results of alewife introduction.

In 1992 volunteers performed over 3000 measurements on lakes across the state as well as provided over 2000 samples that were analyzed in our UNH Freshwater Biology Group analytical lab. To date, data has been collected on over 100 lakes at over 440 sites by almost 600 volunteers who made over 10,492 lake sampling trips!

The General Scenario- 1992

Low snow pack (less water melting through the watershed at springtime) was again a factor in reduced spring runoff although we did see a handful of spring shower events early in the season. While mid and late summer conditions were more cloudy than typical, rainfall was again light. Thus, while not as dry as the summer of 1991, the 1992 summer season had below average precipitation. The general result of this was continued optimum water quality conditions for most lakes.

Lakes were clearer due to a combination of factors that could include lower dissolved color washed in from surrounding wetland areas, lower algae growth (measured as chlorophyll a) in the surface waters and lower suspended sediment levels. Dissolved color is not indicative of a water quality problems (although large increases in dissolved color sometime follow large land clearing operations) but in some of our more pristine program lakes it nevertheless has a large effect on water clarity changes.

With decreased nutrient runoff in the spring, and a lower water table situation translating into less of a chance of septic system failure, algae and some aquatic plant growth would be minimized.
As with color and nutrients the dryer season brought less suspended sediment load to many of our streams and lakes. If increased clarity was not the result of decreased color or chlorophyll levels then it was due to decreased suspended sediment by default. To find out how these water quality indicators inter-relate for a particular lake site compare the secchi disk, chlorophyll and color graphs enclosed in this report. Note whether changes in clarity (secchi disk depth) correspond to chlorophyll or color concentration changes or whether it is a combination of both. If neither seem to exhibit a consistent effect then sediment plays an important role in your lake's clarity.

A few NH LLMP lakes were actually worse off in 1992. These lakes included those more productive lakes in which a good deal of nutrients come internally from sediment release. Lakes with significant nutrient input from septic systems or shoreline fertilization and watering would also have a bad year under the 1992 conditions. Other lakes that fared worse this year were seepage lakes, shallow lakes that rely on groundwater (springs) in-flow and out-flow for replenishment and cleansing. With a low water table, these lakes became great "growth chambers" for algae.

Importance of Long-term Monitoring

A major goal of a monitoring program is to identify any short or long-term changes in the water quality of the lake. Of major concern is the detection of cultural eutrophication: increases in the productivity of the lake, the amount of algae and plant growth, due to the addition of nutrients from human activities. Changes in the natural buffering capacity of the lakes in the program is also a topic of great concern, as New Hampshire receives large amounts of acid precipitation, yet most of our lakes contain little mineral content to neutralize this type of pollution.

For almost a decade and a half, data collected weekly from lakes participating in the New Hampshire Lakes Lay Monitoring Program have indicated there is quite a
variation in water quality indicators through the open water season on the majority of lakes. Short-term differences may be due to variations in weather, lake use, or other chance events. Monthly sampling of a lake during a single summer provides some useful information, but there is a greater chance that important short-term events such as algal blooms or the lake response to storm run-off will be missed. These short-term fluctuations may be unrelated to the actual long-term trend of a lake or they may be indicative of the changing status or "health" of a lake.

To determine if a change in water quality is occurring, a lake must be sampled on a frequent basis over a substantial amount of time. A poorly designed sampling program may even mislead the investigator away from the actual trend: Consider the hypothetical lake in Figure 1. Sampling only once a year during August from 1982 to 1986 would produce a plot (Fig. 2) suggesting a decrease in eutrophication. The actual long-term trend of the lake, increasing eutrophy, can only be clearly discerned by sampling additional times a year for a ten year period (Fig. 1). Frequent monitoring carried out over the course of many summers can provide the information required to distinguish between short-term fluctuation ("noise") and long-term trends ("signal"). To that end, the lake must establish a long-term data base.

The number of seasons it takes to distinguish between the noise and the signal is not the same for each lake. Evaluation and interpretation of a long-term data base will indicate that the water quality of the lake has worsened, improved, or remained the same. In addition, different areas of a lake may show a different response. As more data is collected, prediction of current and future trends can be made. No matter what the outcome, this information is essential for the intelligent management of the lake.

There are also short-term uses for lay monitoring data. The examination of different stations in a lake can disclose the location of specific problems and corrective action can be
initiated to handle the situation before it becomes more serious. On a lighter note, some associations post their weekly data for use in determining the best depths for finding fish!

It takes a considerable amount of effort as well as a deep concern for one's lake to be a lay monitor in the NH Lakes Lay Monitoring Program. Many times a monitor has to brave inclement weather or heavy boat traffic to collect samples. Sometimes it even may seem that one week's data is just the same as the next. Yet every sampling provides important information on the variability of the lake.

We are pleased with the interest and commitment of our Lay Monitors and are proud that their work is what makes the NH LLMP the most extensive, and we believe, the best volunteer program of its kind.

Purpose and Scope of This Study

This was the eleventh year that monitoring of Moultonboro Bay was undertaken by the Freshwater Biology Group and the Lake Winnipesaukee Association while the Langdon Cove Association has participated in the Lakes Lay Monitoring Program for eight years. The program of sampling was designed to continue adding data to the long-term data base established. Sampling emphasis was placed on one deep sampling station in Langdon Cove and three open water deep stations in Moultonboro Bay. Additional sampling was undertaken by the FBG on July 20 to further assess the condition of Moultonboro Bay.

The primary purpose of this report is to discuss results of the 1992 monitoring with emphasis on current conditions of Moultonboro Bay and Langdon Cove including the extent of eutrophication and the lake's susceptibility to increasing acid precipitation. This information is part of a large data base of historical and more recent data compiled and entered onto computer files for New Hampshire lakes that include New Hampshire Fish and Game surveys of the 1930's, the surveys by the New Hampshire Water Supply and
Pollution Control Commission and the FBG surveys. Care must be taken when comparing current results with early studies. Many complications arise due to methodological differences of the various testing facilities and technological improvements in testing.
DISCUSSION OF LAKE MONITORING MEASUREMENTS

The section below details the important concepts involved for the various testing procedures used in the New Hampshire Lakes Lay Monitoring Program. Where appropriate, summary statistics of 1992 results from all participating lakes are included. Certain tests or sampling performed at the time of the optional Freshwater Biology Group field trip are indicated by an asterisk (*).

Thermal Stratification in the Deep Water Sites

Lakes in New Hampshire display distinct patterns of temperature stratification, that develop as the summer months progress, where a layer of warmer water (the epilimnion) overlies a deeper layer of cold water (hypolimnion). The layer that separates the two regions characterized by a sharp drop in temperature with depth is called the thermocline or metalimnion. Some shallow lakes may be continually mixed by wind action and will never stratify. Other lakes may only contain a developed epilimnion and metalimnion.

Moultonboro Bay became stratified into three distinct layers, discussed above, as the season progressed while Langdon Cove is shallower and became only partially stratified when the weather was calm.

Water Transparency

Secchi Disk depth is a measure of the water transparency. The deeper the depth of secchi disk disappearance, the more transparent the lake water; light penetrates deeper if there is little dissolved and/or particulate matter (which includes both living and non-living particles) to absorb and scatter it.

In the shallow areas of many lakes, the secchi disk will hit bottom before it is able to disappear from view (what is referred to as a "Bottom Out" condition). Thus, Secchi disk measurements are generally taken over the deepest sites of a lake. Transparency values
of greater than 4 meters are typical of clear, less productive lakes. Values less than 2.5 meters are generally an indication of a very productive lake. In 1992 the average transparency for lakes participating in the NH LLMP was 5.6 meters with a range of 1.8 to 12.5 meters.

Secchi disk readings collected at Moultonboro Bay and Langdon Cove were high during most of the sampling season and averaged 5.9 meters (range: 5.4 to 6.5 meters) at Site 3 Langdon, 7.0 meters (range: 6.0 to 7.9 meters) at Site 5 Melvin, 5.7 meters (range: 5.4 to 6.4 meters) at Site 6 Bald Peak and 6.9 meters (range: 6.4 to 8.3 meters) at Site 20 Mile Bay.

Chlorophyll a

The chlorophyll a concentration is a measurement of the standing crop of phytoplankton and is often used to classify lakes into categories of productivity called trophic states. Eutrophic lakes are highly productive with large concentrations of algae and aquatic plants due to nutrient enrichment. Characteristics include accumulated organic matter in the lake basin and lower dissolved oxygen in the bottom waters. Summer chlorophyll a concentrations average above 7 mg m$^{-3}$ (7 milligrams per cubic meter; 7 parts per billion). Oligotrophic lakes have low productivity and low nutrient levels and average summer chlorophyll a concentrations are generally less than 3 mg m$^{-3}$. These lakes generally have cleaner bottoms and high dissolved oxygen levels throughout. Mesotrophic lakes are intermediate in productivity with concentrations of chlorophyll a generally between 3 mg m$^{-3}$ and 7 mg m$^{-3}$. In 1992 the average chlorophyll for lakes participating in the NH LLMP was 2.8 mg m$^{-3}$ with a range of 0.4 to 18.5 mg m$^{-3}$.

Surface water chlorophyll a levels in Moultonboro Bay were low throughout the 1992 sampling season and averaged 1.4 mg m$^{-3}$ (range: 0.6 to 2.3 mg m$^{-3}$) at Site 5 Melvin, 1.1 mg m$^{-3}$ (range: 0.6 to 1.5 mg m$^{-3}$) at Site 6 Bald Peak and 1.3 mg m$^{-3}$
(range: 1.0 to 1.6 mg m\(^{-3}\)) at Site 20 Mile Bay. The seasonal chlorophyll \(a\) average in Langdon Cove remained low as well, with an average of 2.2 mg m\(^{-3}\) (range: 0.6 to 3.8 mg m\(^{-3}\)). However, the lake reached more productive levels (above 3 mg m\(^{-3}\)) in late July and again in late August.

Testing is sometimes done to check for **metalimnetic algal populations**, algae that layer out at the thermocline and generally go undetected if only epilimnetic (point or integrated) sampling is undertaken. Chlorophyll concentrations of a water sample collected in the thermocline is compared to the integrated epilimnetic sample. Greater chlorophyll levels of the point sample, in conjunction with microscopic examination of the samples (see Phytoplankton section below), confirm the presence of such a population of algae. These populations should be monitored as they may be an indication of increased nutrient loading into the lake.

No such mid-lake algal populations were present when the FBG conducted its study of Melvin Bay and 20 Mile Bay.

Dissolved Color

The dissolved color of lakes is generally due to dissolved organic matter from **humic substances**, which are naturally-occurring polyphenolic compounds leached from decayed vegetation. Highly colored or "stained" lakes have a "tea" color. Such substances generally do not threaten water quality except as they diminish sunlight penetration into deep waters. Increases in dissolved watercolor can be an indication of increased development within the watershed as many land clearing activities (construction, deforestation, and the resulting increased run-off) add additional organic material to lakes. Natural fluctuations of dissolved color occur when storm events increase drainage from wetlands areas within the watershed. As suspended sediment is a difficult and expensive
test to undertake, both dissolved color and chlorophyll information is important when interpreting the secchi disk transparency.

Dissolved color is measured on a comparative scale that uses standard chloroplatinate dyes and is designated as a color unit or ptu. Lakes with color below 10 ptu are very clear, 10 to 20 ptu are slightly colored, 20 to 40 ptu are lightly tea colored, 40 to 80 ptu are tea colored and greater than 80 ptu indicates highly colored waters. Generally the majority of New Hampshire lakes have color between 20 to 30 ptu.

Total Phosphorus

Of the two "nutrients" most important to the growth of aquatic plants, nitrogen and phosphorus, it is generally observed that phosphorus is the more limiting to plant growth, and therefore the more important to monitor and control. Phosphorus is generally present in lower concentrations, and its sources arise primarily through human related activity in a watershed. Nitrogen can be fixed from the atmosphere by many bloom-forming blue-green bacteria, and thus it is difficult to control. The total phosphorus includes all dissolved phosphorus as well as phosphorus contained in or adhered to suspended particulates such as sediment and plankton. As little as 15 parts per billion of phosphorus in a lake can cause an algal bloom.

Generally, in the more pristine lakes, phosphorus values are higher after spring melt when the lake receives the majority of runoff from its surrounding watershed. The nutrient is used by the algae and plants which in turn die and sink to the lake bottom causing phosphorus to decrease as the summer progresses. Lakes with nutrient loading from human activities and sources (Agriculture, Sediment Erosion, Septic Systems, etc) will show greater concentrations of nutrients as the summer progresses or after major storm events. Circulation of nutrients from the bottom waters of more productive lakes in late fall can result in algal blooms.
Phosphorous samples collected in Moultonboro Bay, Sites 5 Melvin and 20 Mile Bay, were low in both the upper mixed layer of water and near the lake-bottom with a range of 3.5 to 12.1 ppb.

pH

The pH is a way of expressing the acidic level of lake water, and is generally measured with an electrical probe sensitive to hydrogen ion activity. The pH scale has a range of 1 (very acidic) to 14 (very "basic" or alkaline) and is logarithmic (i.e. changes in 1 pH unit reflect a ten times difference in hydrogen ion concentration). Most aquatic organisms tolerate a limited range of pH and most fish species require a pH of 5.5 or higher for successful growth and reproduction.

PH samples collected by the FBG and volunteers remained well within the range of tolerance for most aquatic organisms (6.3 to 6.5 units) at the time of FBG sampling.

Alkalinity

Alkalinity is a measure of the buffering capacity of the lake water. The higher the value the more acid that can be neutralized. Typically lakes in New Hampshire have low alkalinites due to the absence of carbonates and other natural buffering minerals in the bedrock and soils of lake watersheds.

Decreasing alkalinity over a period of a few years can have serious effects on the lake ecosystem. In a study on an experimental acidified lake in Canada by Schindler, gradual lowering of the pH from 6.8 to 5.0 in an 8-year period resulted in the disappearance of some aquatic species, an increase in nuisance species of algae and a decline in the condition and reproduction rate of fish. During the first year of Schindler's study the pH remained unchanged while the alkalinity declined to 20 percent of the pre-treatment value. The decline in alkalinity was sufficient to trigger the disappearance of
zooplankton species, which in turn caused a decline in the "condition" of fish species that fed on the zooplankton.

The analysis of alkalinity employed by the Freshwater Biology Group includes use of a dilute titrant allowing an order of magnitude greater sensitivity and precision than the standard method. Two endpoints are recorded during each analysis. The first endpoint (grey color of dye; pH endpoint of 5.1) approximates low level alkalinity values, while the second endpoint (pink dye color; pH endpoint of 4.6) approximates the alkalinity values recorded historically, such as NH Fish and Game data, with the methyl-orange endpoint method.

The average alkalinity of lakes throughout New Hampshire is low, approximately 9 mg per liter (calcium carbonate alkalinity), while the average alkalinity of the lakes studied by the Freshwater Biology Group in the NH LLMP is approximately 6.3 mg per liter. When alkalinity falls below 2 mg per liter the pH of waters can greatly fluctuate. Alkalinity levels are most critical in the spring when acid loadings from snowmelt and run-off are high, and many aquatic species are in their early, and most susceptible, stages of their life cycle.

Alkalinity levels in Lake Winnipesaukee are low, but similar to the average of 6.3 units for LLMP lakes. The current alkalinity level is sufficient to buffer against variations in pH caused by acid precipitation and thus support most forms of aquatic life.

Specific Conductivity *

The specific conductance of a water sample indicates concentrations of dissolved salts. Leaking septic systems and deicing salt runoff from highways can cause high conductivity values. Fertilizers and other pollutants can also increase the conductivity of the water. Conductivity is measured in micromhos (the opposite of the measurement of resistance ohms) per centimeter, more commonly referred to as micro-Siemans.
Conductivity was low in Moultonboro Bay, Sites 5 Melvin and 20 Mile Bay, and ranged from 48.8 to 56.0 micro-Siemans at the former site while conductivity at the latter site ranged from 44.5 to 49.7 micro-Siemans.

Dissolved Oxygen and Free Carbon Dioxide

Oxygen is an essential component for the survival of aquatic life. Submergent plants and algae take in free carbon dioxide and create oxygen through photosynthesis by day. Respiration by both animals and plants uses up oxygen continually and creates carbon dioxide. Dissolved oxygen profiles determine the extent of declining oxygen concentrations in the lower waters. High carbon dioxide values are indicative of low oxygen conditions and accumulating organic matter. For both gases, as the temperature of the water decreases, more gas can be dissolved in the water.

The typical pattern of clear, unproductive lakes is a slight decline in hypolimnetic oxygen as the summer progresses. Oxygen in the lower waters is important for maintaining a fit, reproducing, cold water fishery. Trout and salmon generally require oxygen concentrations above 5 mg per liter (parts per million) in the cool deep waters. On the other hand, carp and catfish can survive very low oxygen conditions. Oxygen above the lake bottom is important in limiting the release of nutrients from the sediments and minimizing the collection of undecomposed organic matter.

Bacteria, fungi and other decomposers in the bottom waters break down organic matter originating from the watershed or generated by the lake. This process uses up oxygen and produces carbon dioxide. In lakes where organic matter accumulation is high, oxygen depletion can occur. In highly stratified eutrophic lakes the entire hypolimnion can remain unoxygenated or anaerobic until fall mixing occurs.

The oxygen peaks occurring at surface and mid-lake depths during the day are quite common in many lakes. These characteristic heterograde oxygen curves are the result of
the large amounts of oxygen, the by-product of photosynthesis, collecting in regions of high algal concentrations. If the peak occurs in the thermocline of the lake, metalimnetic algal populations (discussed above) may be present.

The oxygen content of Moultonboro Bay remained above 5 milligrams per liter down to about 12.5 meters (the lakebottom) at both sites sampled (5 Melvin and 20 Mile Bay) which is sufficient to support most fish species.

Underwater Light

Underwater light available to photosynthetic organisms is measured with an underwater photometer which is much like the light meter of a camera (only waterproofed !). The photic zone of a lake is the volume of water capable of supporting photosynthesis. It is generally considered to be delineated by the water's surface and the level where light is reduced, by the absorption and scattering properties of the lake water, to one percent of the surface intensity. The one percent depth is sometimes termed the compensation depth. Knowledge of light penetration is important when considering lake productivity and in studies of submerged vegetation. Discontinuity (abrupt changes in the slope) of the profiles could be due to metalimnetic layering of algae or other particulates (discussed above). The underwater photometer allows the investigator to measure light at depths below the Secchi disk depth to supplement the transparency information.

A light profile collected by the FBG on July 20 indicates the photic zone extended to about 11.1 meters at the Melvin Bay sampling station and down to about 12.1 meters at the 20 Mile Bay sampling station. Thus, sufficient light is available to support aquatic vegetation as far down as 12.1 meters in Moultonboro Bay.

Indicator Bacteria

Coliform bacteria in water indicate the possibility of fecal contamination. Although they are usually considered harmless to humans, they are much easier to test for than
harmful pathogenic enteric bacteria (Salmonella, Shigella etc.) and viruses that may be present in fecal material. Total coliform includes all coliform bacteria which arise from the gut of animals or from vegetative materials. Fecal coliform are those specific organisms that inhabit the gut of warm blooded animals. Another indicator organism Fecal streptococcus (sometimes referred to as enterococcus) also can be monitored. The ratio of fecal coliform to fecal strep may be useful in suggesting the type of animal source responsible for the contamination. Desirable levels for a Class A water body is less than 50 total coliform organisms per 100 milliliters. If the coliform level rises above 150 organisms per 100ml swimming should be prohibited.

Ducks and geese are often a common cause of high concentrations of coliform at specific lake sites. While waterfowl are important components to the natural and aesthetic qualities of lakes that we all enjoy, it is poor management practice to encourage these birds by feeding them. The lake and surrounding area provides enough healthy and natural food for the birds and feeding them stale bread or crackers does nothing more than import additional nutrients into the lake and allows for increased plant growth. As birds also are a host to the parasite that causes "swimmers itch" waterfowl roosting areas offer a greater chance for infestation to occur. Thus while leaving offerings for our feathered friends is enticing, the results can prove to be detrimental to the lake system and to human health.

Phytoplankton

The planktonic community includes microbial organisms that represent diverse life forms, containing photosynthetic as well as non-photosynthetic types, and including bacteria, algae, crustaceans and insect larvae (the zooplankton are discussed below in a separate section). Because planktonic algae or "phytoplankton" tend to undergo rapid seasonal cycles on a time scale of days and weeks, the levels of populations found should
be considered to be most representative of the time of collection and not necessarily of other times during the ice-free season, especially the early spring and late fall periods.

The composition and concentration of phytoplankton can be indicative of the trophic status of a lake. Seasonal patterns do occur and must be considered. For example diatoms, tend to be most abundant in April-June and October-November, in the surface or epilimnetic layers of New Hampshire lakes. As the summer progresses, the dominant types might shift to green algae or golden algae. By late season Blue-green bacteria generally dominate. In nutrient rich lakes, nuisance green algae and/or bluegreen bacteria might dominate continually. After fall mixing diatoms might again be found to bloom.

The phytoplankton community of Moultonboro Bay was low in density and dominated by small planktonic forms. The dominant algae on July 20 sampling date were small "non-nuisance" cyanobacteria filaments and "munchable" forms of algae which are readily grazed upon by the zooplankton population. Both the density and types of algae present are indicative of unproductive New Hampshire lakes.

Zooplankton

There are three groups of zooplankton that are generally prevalent in lakes: the protozoa, rotifers and crustaceans. Most research has been devoted to the last two groups although protozoa may be found in substantial amounts. Of the rotifers and the crustaceans, time and budgetary constraints usually make it necessary to sample only the larger zooplankton (macrozooplankton; larger than 80 or 150 microns; 1 million microns make up a meter). Thus, zooplankton analysis is generally restricted only to the larger crustaceans. Crustacean zooplankton are very sensitive to pollutants and are commonly used to indicate the presence of toxic substances in water. The crustaceans can be divided into two groups, the cladocerans (which include the "water fleas") and the copepods.
Macrozooplankton are an important component in the lake system. The filter feeding of the herbivorous ("grazing") species may control the population size of selected species of phytoplankton. The larger zooplankton can be an important food source for juvenile and adult planktivorous fish. All zooplankton play a part in the recycling of nutrients within the lake.

As discussed above for phytoplankton, zooplankton undergo seasonal population cycles and the results discussed below are most representative of the collection dates and not necessarily of other times during the ice-free season, especially during the early spring and late fall.

The MacroZooplankton population of Moultonboro Bay was low in density and demonstrated a moderate diversity at both sites sampled, 5 Melvin Bay and 20 Mile Bay. The dominant Zooplanktonic form was the omnivorous calanoid copepod, *Diaptomous*, while the herbivorous cladoceran, *Holopedium*, was the sub-dominant form. Two species of *Daphnia*, an efficient grazer of phytoplankton, were also present at the time of FBG. These large grazers can efficiently feed upon the phytoplankton population and thus keep algal growth in check. *Daphnia* also serve as an important food source for juvenile fish and are thus beneficial to the fishery of Moultonboro Bay.

Fish Condition

As with the plankton discussed above, the health of the fish species of a lake will be indicative of the overall water quality. Condition is determined by comparing the length of the fish to its weight. As would be expected, the heavier the fish for its length, the better its condition will be. By also examining a scale collected from the fish under a microscope, the approximate age and growth history can also be determined.
REFERENCES

REPORT FIGURES
ALGAL STANDING CROP 1980–1989

A MEASUREMENT OF EUTROPHICATION

TREND: INCREASING EUTROPHY

Figure 1. The upper graph depicts weekly chlorophyll concentrations of a model lake measured weekly during ice-free conditions. The long-term trend is that of increased eutrophication (lake has become "greener"). Diamonds below the curve represent late summer (August) dates the data set was subsampled to create Figure 2.

ALGAL STANDING CROP 1982–1986

LATE SEASON SAMPLE FROM FIG. 1 ABOVE

TREND: DECREASING EUTROPHY

Figure 2. The lower graph depicts late summer chlorophyll data of the model lake in Figure 1. Note how limited sampling over a five year period suggests a much different trend, that of decreasing eutrophy. Thus, limited sampling can mislead the investigator of long-term trends.
Figure 3. Location of 1992 deep sampling stations for Lake Winnipesaukee, Moultonboro Bay and Langdon Cove.
Figure 4. Langdon Cove, Site 3 Langdon. Seasonal trends for Secchi Disk Depth (water transparency), 1992. Dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 5. Langdon Cove, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 3 Langdon. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a. The dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 6. Langdon Cove, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 3 Langdon. Color expressed as platinum-cobalt units (ptu). The dotted horizontal line represents the dissolved color average for participating LLMP lakes.
Figure 7. Moultonboro Bay, Site 5 Melvin. Seasonal trends for Secchi Disk Depth (water transparency), 1992. Dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 8. Moultonboro Bay, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 5 Melvin. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a. The dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 9. Moultonboro Bay, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 5 Melvin. Color expressed as platinum-cobalt units (ptu). The dotted horizontal line represents the dissolved color average for participating LLMP lakes.
Figure 10. Moultonboro Bay, Site 6 Bald Peak. Seasonal trends for Secchi Disk Depth (water transparency), 1992. Dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 11. Moultonboro Bay, 1992. Seasonal trends for chlorophyll \(a\) concentration of lay monitor Site 6 Bald Peak. Chlorophyll \(a\) concentrations in parts per billion (ppb) of chlorophyll \(a\). The dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 12. Moultonboro Bay, 1992. Seasonal trends for dissolved color concentration of lay monitor Site 6 Bald Peak. Color expressed as platinum-cobalt units (ptu). The dotted horizontal line represents the dissolved color average for participating LLMP lakes.
Figure 13. Moultonboro Bay, Site 20 Mile Bay. Seasonal trends for Secchi Disk Depth (water transparency), 1992. Dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.

Figure 14. Moultonboro Bay, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Site 20 Mile Bay. Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a. The dotted horizontal lines on the plot border the ranges common to oligotrophic, mesotrophic and eutrophic lakes.
Figure 15. Lake Winnipesaukee, 1992. Seasonal trends for chlorophyll a concentration of lay monitor Sites 3 Langdon (squares), 5 Melvin (crosses), 6 Bald Peak (diamonds) and 20 Mile Bay (triangles). Chlorophyll a concentrations in parts per billion (ppb) of chlorophyll a.

Figure 16. Lake Winnipesaukee, 1992. Seasonal trends for dissolved color concentration of lay monitor Sites 3 Langdon (squares), 5 Melvin (crosses), 6 Bald Peak (diamonds) and 20 Mile Bay (triangles). Color expressed as platinum-cobalt units (ptu).
Figure 17. Comparison of 1992 Moultonboro Bay and Langdon Cove lay monitor Chlorophyll a data with historical data. The patterns of the bars display the minimum, mean and maximum values for the respective years sampled while the length of the bars represents the total range of values. The higher the chlorophyll a concentration, the more algal growth (i.e. greener water).

Figure 18. Comparison of 1992 Moultonboro Bay and Langdon Cove lay monitor Secchi Disk Transparency data with historical data. The patterns of the bars display the minimum, mean and maximum values for the respective years sampled while the length of the bars represents the total range of values. The higher the secchi disk value, the clearer the lake. Secchi disk readings are taken to the nearest tenth (0.1) of a meter.
COMPARISON: 1992 TO HISTORICAL DATA
LAKE WINNIPESAUKEE WATER CLARITY
LAY MONITOR DATA

LEGEND
KEY
1982-1991
3 LANGDON 1992
1982-1991
5 MELVIN 1992
1982-1991
6 BALD PEAK 1992
20 MILE BAY 1992

MINIMUM
AVERAGE
MAXIMUM

LOW
MODERATE
HIGH

SECCHI DISK DEPTH (meters)

The higher number = clearer water

COMPARISON: 1992 TO HISTORICAL DATA
LAKE WINNIPESAUKEE CHLOROPHYLL a
LAY MONITOR DATA

LEGEND
KEY
1982-1991
3 Langdon 1992
1982-1991
5 Melvin 1992
1982-1990
6 Bald Pk 1992
20 MileBay 1992

MINIMUM
AVERAGE
MAXIMUM

LOW
MODERATE
HIGH

CHLOROPHYLL a CONCENTRATION (ppb)

The higher number = more algae
Figure 19. Profiles of temperature (TEMP) and dissolved oxygen (DO) taken on July 20, 1992 in Moultonboro Bay, Sites (A) 5 Melvin and (B) 20 Mile Bay. Units of measurement are as indicated on the respective graphs. Dissolved oxygen and temperature were measured at one-half meter intervals.
Figure 20. Pie diagrams of phytoplankton abundance for Moultonboro Bay, Sites (A) 5 Melvin and (B) 20 Mile Bay, collected on July 20, 1992. The algal samples were collected in the surface waters of the lake and are representative of the algal composition in the upper stratum. The phytoplankton abundance is presented as relative percent by algal class.
MOULT. BAY - SITE 5 MELVIN
JULY 20, 1992
0-5.5 metres

SITE 20 MILE BAY
JULY 20, 1992
0-5.5 metres

PHOTOPLANKTON ABUNDANCE • PERCENT BY ALGAL CLASS
Figure 21. Pie diagram of MacroZooplankton abundance for Moultonboro Bay, Sites (A) 5 Melvin and (B) 20 Mile Bay, collected on July 20, 1992. The Macrozooplankton abundances (for the respective planktonic genera) are presented as number of animals per liter of lakewater.
SITE 5 MELVIN BAY
MACROZOOPLANKTON DATA 0-11.5m
7-20-92

DIAPANOSOMA 1.01
D. CATAMBA 0.46
EUBOSMINA 0.09
BOSMINA 0.09
CICLOPOIDS 0.73
D. LONGIREMUS 0.46
DIAPTONUS 2.12

WINNI - MOULT. BAY
SITE 20 MILE BAY
MACROZOOPLANKTON DATA 0-9m
7-20-92

HOLOPEDIUM 0.82
D. CATAMBA 0.35
CICLOPOIDS 0.35
D. COPEPODID 0.11
DIAPTONUS 0.82

MACROZOOPLANKTON DENSITY = # OF ANIMALS PER LITER
Winnipesaukee-Moultonboro Bay Data on file as of 12/29/1992

Lakes Lay Monitoring Program, U.N.H.

[Lay Monitor Data]

Winnipesaukee-Moultonboro Bay, NH
-- subset of trophic indicators, all sites, 1992

1992 SUMMARY
Average transparency: 6.5 (1992: 35 values; 5.4 - 7.9 range)
Average chlorophyll: 1.6 (1992: 35 values; 0.6 - 3.8 range)
Average alk (gray): 7.2 (1992: 10 values; 6.5 - 8.2 range)
Average alk (pink): 8.6 (1992: 10 values; 8.0 - 9.0 range)
Average color, 440: 22.5 (1992: 20 values; 14.6 - 43.8 range)

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Transp (m)</th>
<th>Chl a (ppb)</th>
<th>Total Phos (ppb)</th>
<th>Alk. (gray)</th>
<th>Alk. (pink)</th>
<th>Color Pt-Co units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Langdon</td>
<td>06/29/1992</td>
<td>5.4</td>
<td>1.1</td>
<td>---</td>
<td>6.5</td>
<td>8.3</td>
<td>23.2</td>
</tr>
<tr>
<td>3 Langdon</td>
<td>07/07/1992</td>
<td>6.3</td>
<td>2.3</td>
<td>---</td>
<td>6.6</td>
<td>8.0</td>
<td>16.3</td>
</tr>
<tr>
<td>3 Langdon</td>
<td>07/14/1992</td>
<td>6.0</td>
<td>2.4</td>
<td>---</td>
<td>6.8</td>
<td>8.4</td>
<td>20.6</td>
</tr>
<tr>
<td>3 Langdon</td>
<td>07/21/1992</td>
<td>---</td>
<td>3.8</td>
<td>---</td>
<td>7.6</td>
<td>9.0</td>
<td>18.9</td>
</tr>
<tr>
<td>3 Langdon</td>
<td>07/27/1992</td>
<td>5.8</td>
<td>3.4</td>
<td>---</td>
<td>7.1</td>
<td>8.8</td>
<td>20.6</td>
</tr>
<tr>
<td>3 Langdon</td>
<td>08/04/1992</td>
<td>5.9</td>
<td>1.7</td>
<td>---</td>
<td>7.5</td>
<td>8.1</td>
<td>30.9</td>
</tr>
<tr>
<td>3 Langdon</td>
<td>08/10/1992</td>
<td>6.5</td>
<td>1.1</td>
<td>---</td>
<td>6.9</td>
<td>8.6</td>
<td>24.9</td>
</tr>
<tr>
<td>3 Langdon</td>
<td>08/17/1992</td>
<td>6.3</td>
<td>3.1</td>
<td>---</td>
<td>7.2</td>
<td>9.0</td>
<td>19.8</td>
</tr>
<tr>
<td>3 Langdon</td>
<td>08/25/1992</td>
<td>5.6</td>
<td>0.6</td>
<td>---</td>
<td>7.6</td>
<td>9.0</td>
<td>22.3</td>
</tr>
<tr>
<td>3 Langdon</td>
<td>09/04/1992</td>
<td>5.4</td>
<td>2.0</td>
<td>---</td>
<td>8.2</td>
<td>9.0</td>
<td>22.3</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>06/03/1992</td>
<td>7.9</td>
<td>1.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>06/10/1992</td>
<td>7.2</td>
<td>1.9</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>06/17/1992</td>
<td>7.2</td>
<td>2.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>06/25/1992</td>
<td>6.2</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>24.9</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>07/01/1992</td>
<td>7.0</td>
<td>1.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>31.8</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>07/17/1992</td>
<td>7.1</td>
<td>1.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>43.8</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>07/22/1992</td>
<td>6.0</td>
<td>1.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>19.3</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>07/29/1992</td>
<td>7.2</td>
<td>1.9</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>08/07/1992</td>
<td>7.4</td>
<td>1.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>14.6</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>08/12/1992</td>
<td>7.5</td>
<td>1.9</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>08/19/1992</td>
<td>6.7</td>
<td>1.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>18.9</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>08/27/1992</td>
<td>7.1</td>
<td>0.7</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>09/02/1992</td>
<td>7.3</td>
<td>0.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5 Melvin</td>
<td>09/10/1992</td>
<td>6.8</td>
<td>1.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6 Bald Pk</td>
<td>07/16/1992</td>
<td>6.4</td>
<td>1.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>30.1</td>
</tr>
<tr>
<td>6 Bald Pk</td>
<td>08/25/1992</td>
<td>5.4</td>
<td>0.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6 Bald Pk</td>
<td>09/02/1992</td>
<td>5.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6 Bald Pk</td>
<td>09/09/1992</td>
<td>5.8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6 Bald Pk</td>
<td>09/16/1992</td>
<td>5.5</td>
<td>1.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>16.3</td>
</tr>
<tr>
<td>20 MileBay</td>
<td>07/28/1992</td>
<td>7.5</td>
<td>1.3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20 MileBay</td>
<td>08/05/1992</td>
<td>6.5</td>
<td>1.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>14.6</td>
</tr>
<tr>
<td>20 MileBay</td>
<td>08/11/1992</td>
<td>6.4</td>
<td>1.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20 MileBay</td>
<td>08/19/1992</td>
<td>6.7</td>
<td>1.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Winnipesaukee-Moultonboro Bay Data on file as of 12/29/1992

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Transparency (m)</th>
<th>Chl a (ppb)</th>
<th>Total Phos (ppb)</th>
<th>Alk. (gray) ph 5.1</th>
<th>Alk. (pink) ph 4.6</th>
<th>Color Pt-Co units</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MileBay</td>
<td>08/25/1992</td>
<td>6.8</td>
<td>1.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20 MileBay</td>
<td>09/02/1992</td>
<td>---</td>
<td>1.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20 MileBay</td>
<td>09/09/1992</td>
<td>6.4</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20 MileBay</td>
<td>09/17/1992</td>
<td>6.7</td>
<td>1.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>16.3</td>
</tr>
</tbody>
</table>

<< End of 1992 listing, 37 records >>
TYPICAL TEMPERATURE CONDITIONS: SUMMER
NEW HAMPSHIRE - DEEP LAKE
LAY MONITOR SAMPLING

DEPTH (meters)

- INDICATES OPTIONAL TESTING

TYPICAL TEMPERATURE CONDITIONS: SUMMER
NEW HAMPSHIRE - DEEP LAKE
FBG SAMPLING

DEPTH (meters)

TYPICAL TEMPERATURE CONDITIONS: SUMMER
NEW HAMPSHIRE - DEEP LAKE

DEPTH (meters)

EPILIMNION
UPPER - WARM WATER LAYER - WIND MIXED

METALIMNION
SHARP DROP IN TEMPERATURE (THERMOCLINE)

HYPOLIMNION
BOTTOM COLD WATER LAYER
APPENDIX C

GLOSSARY OF LIMNOLOGICAL TERMS

Aerobe—Organisms requiring oxygen for life. All animals, most algae and some bacteria require oxygen for respiration.

Algae—See phytoplankton.

Alkalinity—Total concentration of bicarbonate and hydroxide ions (in most lakes).

Anaerobe—Organisms not requiring oxygen for life. Some algae and many bacteria are able to respire or ferment without using oxygen.

Anoxic—A system lacking oxygen, therefore incapable of supporting the most common kind of biological respiration, or of supporting oxygen-demanding chemical reactions. The deeper waters of a lake may become anoxic if there are many organisms depleting oxygen via respiration, and there is little or no replenishment of oxygen from photosynthesis or from the atmosphere.

Benthic—Referring to the bottom sediments.

Bacterioplankton—Bacteria adapted to the "open water" or "planktonic" zone of lakes, adapted for many specialized habitats and include groups that can use the sun's energy (phytoplankton), some that can use the energy locked in sulfur or iron, and others that gain energy by decomposing dead material.

Bicarbonate—The most important ion (chemical) involved in the buffering system of New Hampshire lakes.

Buffering—The capacity of lakewater to absorb acid with a minimal change in the pH. In New Hampshire the chemical responsible for buffering is the bicarbonate ion. (See pH.)

Chloride—One of the components of salts dissolved in lakewater. Generally the most abundant ion in New Hampshire lakewater, it may be used as an indicator of raw sewage or of road salt.

Chlorophyll a—The main green pigment in plants. The concentration of chlorophyll a in lakewater is often used as an indicator of algal abundance.

Circulation—The period during spring and fall when the combination of low water temperature and wind cause the water column to mix freely over its entire depth.

Density—The weight per volume of a substance. The more dense an object, the heavier it feels. Low-density liquids will float on higher-density liquids.

Dimictic—The thermal pattern of lakes where the lake circulates, or mixes, twice a year. Other patterns such as polymictic (many periods of circulation per year) are uncommon in New Hampshire. (See also meromictic and holomictic).
Dystrophy- The lake trophic state in which the lakewater is highly stained with humic acids (reddish brown or yellow stain) and has low productivity. Chlorophyll a concentration may be low or high.

Epilimnion- The uppermost layer of water during periods of thermal stratification. (See lake diagram).

Eutrophy- The lake trophic state in which algal production is high. Associated with eutrophy is low Secchi disk depth, high chlorophyll a, and high total phosphorus. From an esthetic viewpoint these lakes are "bad" because water clarity is low, aquatic plants are often found in abundance, and cold-water fish such as trout and salmon are usually not present. A good aspect of eutrophic lakes is their high productivity in terms of warm-water fish such as bass, pickerel, and perch.

Free CO2- Carbon dioxide that is not combined chemically with lake water or any other substances. It is produced by respiration, and is used by plants and bacteria for photosynthesis.

Holomixis- The condition where the entire lake is free to circulate during periods of overturn. (See meromixis.)

Humic Acids- Dissolved organic compounds released from decomposition of plant leaves and stems. Humic acids are red, brown, or yellow in color and are present in nearly all lakes in New Hampshire. Humic acids are consumed only by fungi, and thus are relatively resistant to biological decomposition.

Hydrogen Ion- The "acid" ion, present in small amounts even in distilled water, but contributed to rain-water by atmospheric processes, to ground-water by soils, and to lakewater by biological organisms and sediments. The active component of "acid rain". See also "pH" the symbolic value inversely and exponentially related to the hydrogen ion.

Hypolimnion- The deepest layer of lakewater during periods of thermal stratification. (See lake diagram)

Lake- Any "inland" body of relatively "standing" water. Includes many synonyms such as ponds, tarns, loches, billabongs, bogs, marshes, etc.

Lake Morphology- The shape and size of a lake and its basin.

Littoral- The area of a lake shallow enough for submerged aquatic plants to grow.

Meromixis- The condition where the entire lake fails to circulate to its deepest points; caused by a high concentration of salt in the deeper waters, and by peculiar landscapes (small deep lakes surrounded by hills and/or forests. (Contrast holomixis.)

Mesotrophy- The lake trophic state intermediate between oligotrophy and eutrophy. Algal production is moderate, and chlorophyll a, Secchi disk depth, and total phosphorus are also moderate. These lakes are esthetically "fair" but not as good as oligotrophic lakes.

Metalimnion- The "middle" layer of the lake during periods of summer thermal stratification. Usually defined as the region where the water temperature changes at least
one degree per meter depth. Also called the thermocline.

Mixis - Periods of lakewater mixing or circulation.

Mixotrophy - The lake condition where the water is highly stained with humic acids, but algal production and chlorophyll a values are also high.

Oligotrophy - The lake trophic state where algal production is low, Secchi disk depth is deep, and chlorophyll a and total phosphorus are low. Esthetically these lakes are the "best" because they are clear and have a minimum of algae and aquatic plants. Deep oligotrophic lakes can usually support cold-water fish such as lake trout and land-locked salmon.

Overturn - See circulation or mixis.

pH - A measure of the hydrogen ion concentration of a liquid. For every decrease of 1 pH unit, the hydrogen ion concentration increases 10 times. Symbolically, the pH value is the "negative logarithm" of the hydrogen ion concentration. For example, a pH of 5 represents a hydrogen ion concentration of 10^{-5} molar. [Please thank the chemists for this lovely symbolism -- and ask them to explain it in lay terms!] In any event, the higher the pH value, the lower the hydrogen ion concentration. The range is 0 to 14, with 7 being neutral 1 denoting high acid condition and 14 denoting very basic condition.

Photosynthesis - The process by which plants convert the inorganic substances carbon dioxide and water into organic glucose (sugar) and oxygen using sunlight as the energy source. Glucose is an energy source for growth, reproduction, and maintenance of almost all life forms.

Phytoplankton - Microscopic algae which are suspended in the "open water" zone of lakes and ponds. A major source of food for zooplankton. Common examples include: diatoms, euglenoids, dinoflagellates, and many others. Usually included are the blue-green bacteria.

Parts per million - Also known as "ppm". This is a method of expressing the amount of one substance (solute) dissolved in another (solvent). For example, a solution with 10 ppm of oxygen has 10 pounds of oxygen for every 999,990 pounds (500 tons) of water. Domestic sewage usually contains from 2 to 10 ppm phosphorus.

Parts per billion - Also known as "ppb". This is only 1/1000 of ppm, therefore much less concentrated. As little as 1 ppb of phosphorus will sustain growth of algae. As little as 10 ppb phosphorus will cause algal blooms! Think of the ratio as 1 milligram (1/28000 of an ounce) of phosphorus in 25 barrels of water (55 gallon drums)! Or, 1 gallon of septic waste diluted into 10,000 gallons of lakewater. It adds up fast!

Plankton - Community of microorganisms that live suspended in the water column, not attached to the bottom sediments or aquatic plants. See also "bacterioplankton" (bacteria), "phytoplankton" (algae) and "zooplankton" (microcrustaceans and rotifers).

Saturated - When a solute (such as water) has dissolved all of a substance that it can. For example, if you add table salt to water, a point is reached where any additional salt fails to dissolve. The water is then said to be saturated with table salt. In lakewater,
gaseous oxygen can dissolve, but eventually the water becomes saturated with oxygen if exposed sufficiently long to the atmosphere or another source of oxygen.

Specific Conductivity - A measure of the amount of salt present in lakewater. As the salt concentration increases, so does the specific conductivity (electrical conductivity).

Stratum - A layer or "blanket". Can be used to refer to one of the major layers of lakewater such as the epilimnion, or to any layers of organisms or chemicals that may be present in a lake.

Thermal Stratification - The process by which layers are built up in the lake due to heating by the sun and partial mixing by wind.

Thermocline - Region of temperature change. (See metalimnion.)

Total Phosphorus - A measure of the concentration of phosphorus in lakewater. Includes both free forms (dissolved), and chemically combined form (as in living tissue, or in dead but suspended organisms).

Trophic Status - A classification system placing lakes into similar groups according to their amount of algal production. (See Oligotrophy, Mesotrophy, Eutrophy, Mixotrophy, and Dystrophy for definitions of the major categories)

Z - A symbol used by limnologists as an abbreviation for depth.

Zooplankton - Microscopic animals in the planktonic community. Some are called "water fleas", but most are known by their scientific names. Scientific names include: *Daphnia*, *Cyclops*, *Bosmina*, and *Keylicottia*.